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Abstract 

Background: The mitochondrial enzyme amyloid beta-binding alcohol dehydrogenase (ABAD) 

also known as 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) has been connected with the 

pathogenesis of Alzheimer’s disease (AD). ABAD/ 17β-HSD10 is a binding site for the amyloid-beta peptide 

(Aβ) inside the mitochondrial matrix where it exacerbates Aβ toxicity. Interaction between these two 

proteins triggers a series of events leading to mitochondrial dysfunction as seen in AD. Methods: As ABAD’s 

enzymatic activity is required for mediating Aβ toxicity, its inhibition presents a promising strategy for AD 

treatment. In this study, a series of new benzothiazolylurea analogues have been prepared and evaluated 

in vitro for their potency to inhibit ABAD/ 17β-HSD10 enzymatic activity. The most potent compounds have 

also been tested for their cytotoxic properties and their ability to permeate through blood-brain barrier 

has been predicted. To explain the structure-activity relationship QSAR and pharmacophore studies have 

been performed.  Results and Conclusions: Compound 12 was identified being the most promising hit 

compound with good inhibitory activity (IC50 = 3.06 ± 0.40µM) and acceptable cytotoxicity profile 

comparable to the parent compound of frentizole. 
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The satisfactory physical-chemical properties suggesting its capability to permeate through BBB 

make compound 12 a novel lead structure for further development and biological assessment. 
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Introduction 

Alzheimer’s disease (AD) is the most common cause of senile dementia. About 20 million people 

worldwide suffer from this devastating illness [1]. AD is characterized by progressive decline of cognitive 

functions and memory. Despite intensive research, the pathogenic mechanisms of AD are still not fully 

understood and consequently no effective treatment has been yet developed. 

The main pathological hallmarks of AD represents extracellular amyloid-beta peptide (Aβ) 

deposits also termed senile plaques, intracellular deposits of phosphorylated τ-protein, termed 

neurofibrillary tangles, and loss of neurons [2,3]. Although the aetiology of AD is still not known, buildup 

of Aβ is considered to play an important part in disease progression. The original amyloid cascade 

hypothesis suggested that extracellular plaques are the main toxic form of Aβ. However, recent data 

indicates that soluble intracellular oligomers are responsible for most of Aβ toxicity [4–8]. 

Inside the cell, Aβ interacts with a number of proteins including amyloid-binding alcohol 

dehydrogenase (ABAD), also referred as 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) [9], an 

enzyme located within mitochondrial matrix capable to catalyse oxidation of alcohols and reduction of 

aldehydes and ketones. 

As cells expressing catalytically inactive mutants of ABAD/ 17β-HSD10 show decreased sensitivity 

to Aβ, it has been suggested that the ABAD/ 17β-HSD10 enzymatic activity is required for mediating Aβ 

toxicity [10]. Therefore, inhibition of ABAD/ 17β-HSD10 is a possible strategy for AD treatment, which has 

already been indicated with the use of a small molecule ABAD/ 17β-HSD10 inhibitor AG18051. AG18051 

is an irreversible ABAD/ 17β-HSD10 inhibitor reported to create a covalent bond with the cofactor NAD+ 

within the enzyme’s active site, and was shown subsequently to ameliorate Aβ toxicity in cell based studies 

[11,12]. 

Previously, frentizole and its analogues were found to be inhibitors of the ABAD-Aβ interaction, 

which presents another approach of targeting ABAD/ 17β-HSD10 for AD treatment [13,14]. Assuming that 

this effect was due to binding of these compounds to ABAD/ 17β-HSD10, some frentizole analogues were 

also tested as ABAD/ 17β-HSD10 inhibitors, which led to the discovery of a novel class of ABAD/ 17β-

HSD10 inhibitors [15]. Similarly to AG18051, this new class of ABAD/ 17β-HSD10 inhibitors have 

cytoprotective effects in cells treated with Aβ [12,15]. 

Additionally to AD treatment ABAD/ 17β-HSD10 inhibition could be also employed in treatment 

of certain types of prostatic cancer, where overexpression of ABAD/ 17β-HSD10 takes place allowing the 

cancer cells to generate 5α-dihydrotestosterone in the absence of testosterone [16,17]. 

However, currently known ABAD/ 17β-HSD10 inhibitors (Fig. 1) suffer from some considerable 

drawbacks making them poor lead drug-like candidates. Compound AG18051 creates a covalent bond 

with NAD+ cofactor within the enzyme’s active site and with such mechanism of action it is likely to affect 

also other NAD+ dependant enzymes [11]. Compound RM-532-46 could suffer from specificity 
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issues as well, because it comprises a steroidal structural scaffold, which could be recognized by other 

steroid-binding sites [18]. Recently identified phosphonate-benzothiazole inhibitors showed rather poor 

activity with best compound having IC50 value of 52.7 μM [15]. Hence there is a need for developing novel 

ABAD/ 17β-HSD10 inhibitors with improved properties. 

 

Figure 1: Currently known ABAD/ 17β-HSD10 inhibitors and their IC50 values. 

In this study we have designed, synthesized and evaluated in vitro a series of novel 6-

benzothiazolyl ureas, thioureas and guanidines. The most promising compounds have been further 

assessed for their cytotoxic properties and ability to cross the blood-brain barrier (BBB). 

2. MATERIALS AND METHODS 

2.1 General chemistry 

Solvents and reagents were purchased from Fluka and Sigma-Aldrich (Czech Republic) and 

used without further purification. Reactions were monitored by TLC performed on aluminium sheets 

precoated with silica gel 60 F254 (Merck, Czech Republic) using mobile phase CHCl3/MeOH 50:1 – 5:1 

and detected under 254 nm UV light. Column chromatography was performed on silica gel 60 (230 

mesh). Melting points were measured on Stuart SMP30 melting point apparatus (Bibby Scientific 

Limited, Staffordshire, UK) and are uncorrected. 

NMR spectra were recorded at Varian Gemini 300 (1H 300 MHz, 13C 75 MHz, Palo Alto CA, USA) 

or Varian S500 (1H 500 MHz, 13C 126 MHz, Palo Alto CA, USA). In all cases, the chemical shift values for 1H 

spectra are reported in ppm (δ) relative to residual CHD2SO2CD3(δ 2.50), shift values for 13C spectra are 

reported in ppm (δ) relative to solvent peak dimethylsulfoxide-d6  (δ 39.52) [19]. 

Mass spectra (MS, respectively, MSn) were recorded on a LTQ XL linear ion trap mass 

spectrometer and evaluated using Xcalibur v 2.5.0 software (both Thermo Fisher Scientific, San Jose, CA, 

USA). The sample was dissolved in methanol (HPLC grade; Sigma-Aldrich, Prague, Czech Republic) and 

injected continuously (10 µL/min) by using a Hamilton syringe into the electrospray ion source. The 

parameters of electrospray were set up as follows: sheath gas flow rate 20 arbitrary units, aux gas 
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flow rate 10 arbitrary units, sweep gas flow rate 0 arbitrary units, spray voltage 4.5 kV, capillary 

temperature 275 °C, capillary voltage 13 V, tube lens 100 V. 

For HRMS determination, a Dionex UltiMate 3000 analytical LC-MS system coupled with a Q 

Exactive Plus hybrid quadrupole-orbitrap spectrometer (both produced by ThermoFisher Scientific, 

Bremen, Germany) was used. The LC-MS system consisted of a binary pump HPG-3400RS connected to 

a vacuum degasser, a heated column compartment TCC-3000, an autosampler WTS-3000 equipped with 

a 25 μL loop and a VWD-3000 ultraviolet detector. A Waters Atlantis dC18 100Å (2.1 x 100mm/3µm) 

column was used as the stationary phase. The analytical column was protected against mechanical 

particles by an in-line filter (Vici Jour) with a frit of 0.5µm pores. Water (MFA) and acetonitrile (MFB) 

used in the analyses were acidified with 0.1% (v/v) of formic acid. Ions for mass spectrometry (MS) were 

generated by heated electro-spray ionization source (HESI) working in positive mode, with the following 

settings: sheath gas flow rate 40, aux gas flow rate 10, sweep gas flow rate 2, spray voltage 3.2 kV, 

capillary temperature 350°C, aux gas temperature 300°C, S-lens RF level 50, microscans 1, maximal 

injection time 35ms, resolution 140 000. The full-scan MS analyses monitored ions within m/z range 100 

– 1500. The studied compounds were dissolved in methanol and 1µL of the solution was injected into 

the LC-MS system. For elution, following ramp-gradient program was used: 0 – 1 min: 10% MFB, 1 – 4 

min: 10% – 100% MFB, 4 – 5 min: 100% MFB, 5 – 7.5 min: 10% MFB. The flow-rate in the gradient elution 

was set to 0.4 mL/min. To increase the accuracy of HRMS, internal lock-mass calibration was employed 

using polysiloxane traces of m/z = 445.12003 ([M+H]+, [C2H6SiO]6) present in the mobile phases. The 

chromatograms and mass spectra were processed in Chromeleon 6.80 and Xcalibur 3.0.63 software, 

respectively. 

Elemental analysis (EA) was measured at Perkin-Elmer CHN Analyser 2400 Series II apparatus. 

2.2 Physical-chemical properties calculation and measurement 

Physical-chemical properties of prepared compounds in the unionized form were calculated in 

ACDLabs PhysChem Suite 2014 [20]. 

The method of measurement and calculation of ElogP was adapted from Technical guide OECD 

No. 117 [21]. Based on this method, the ElogD was determined accordingly [22]. All chemicals were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Seven standard stock solutions were prepared by 

dissolving nitrobenzene (ReagentPlus, 99%), chlorobenzene (puriss. p.a., ACS reagent, ≥99.5%), thymol 

(≥99.0%), biphenyl (ReagentPlus, 99.5%), butylbenzene (≥99%), fluoranthene (98%) and 4,4′-DDT (98%) 

in HPLC grade methanol and stored in the refrigerator at temperature of 4 °C. Mixed standard solution 

was prepared prior analysis by adding each of the stock standard solutions (100 µL) to 1.5 mL glass vial 

and addition of HPLC grade methanol (300 µL). Standard solution for dead time measurement was 

prepared by dissolving of citric acid (1 mg) in 70% solution of HPLC grade methanol and 30% 
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distilled water (1 mL). The Tris-HCl buffer for mobile phase was prepared from 0.05 M 

tris(hydroxymethyl)aminomethane solution by adjusting by 1 M HCl to pH 7.4. The pH measurement 

was carried by multimeter inoLab Multi 9430 IDS (WTW, Weilheim, DEU) with attached electrode 

SenTix Mic (WTW, Weilheim, DEU), DuraCal pH buffers (Hamilton, Bonduz, CHE) were used for 

calibration of pH electrode. All used water was prepared by Ultrapore Simplicity Water Purification 

System type 1 (Merck Millipore, Billerica, MA, USA). 

The synthesized sample (1 mg) was dissolved in solution of 70% HPLC grade methanol and 30% 

distilled water (1 mL). Sample solutions were centrifuged using an Eppendorf Centrifuge 5418 

(Eppendorf, Hamburg, Germany) for 10 minutes in frequency of 14000 rounds per minute and 0.9 mL 

of centrifuged supernatants was transferred to 1.5 mL glass vials. The analysis was performed by HPLC 

system Infinity 1260 (Agilent Technologies, Santa Clara, CA, USA) with Infinity 1290 auto sampler 

(G4226A), Infinity 1260 Quaternary LC pump (G1311B), Infinity 1260 Thermostatted Column 

Compartment (G1316A), and Infinity 1260 Diode-Array Detector (G4212B). Used LC column was 

Kinetex® 5 µm C18 100 Å, 100 x 4.6 mm (Phenomenex, Torrance, CA, USA) with attached 

SecurityGuardTM system for C18 HPLC column (Phenomenex, Torrance, CA, USA). Duration of the 

analysis was set to 60 min in flow rate of mobile phases 1 mL/min and at a temperature of 20 °C within 

the column. Dosage of sample and standard solution from autosampler was set to 10 μL. There was 

isocratic flow of mobile phases with 70% HPLC grade methanol and 30% distilled water for ElogP 

measurement and 70% HPLC grade methanol and 30% 0.05 M Tris-HCl buffer (pH 7.4) for ElogD 

measurement respectively. Both, analyses of standard solution and sample solutions were performed 

in triplicate. 

The capacity factors (Eq. 1) were calculated from retention times of samples or standards: 

k = tr−t0 (Eq. 1) 
t0 

k = capacity factor; t0 = dead time (retention time of citric acid); tr = retention time of sample 

The ElogP values were calculated (Eq. 2). Linear regression coefficients were obtained from 

linear regression of ElogP of standard solutions against the log of their capacity factors. The ElogD 

values were calculated from measurement with 0.05 M Tris-HCl buffer (pH 7.4) as mobile phase B, 

using same standard solutions and equations. 

ElogP = a + b × logk (Eq. 2) 

P = octanol/water partition coefficient; a, b = linear regression coefficients; k = capacity factor 

2.3 ABAD/ 17β-HSD10 Purification and Initial Compound Screens 
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Recombinant ABAD/ 17β-HSD10 was purified from E.coli as described in Aitken et al. 2016 

[23]. Hroch et al. 2016 [24] was used as a reference to assess the capability of the synthesised 

benzothiazole urea analogues to modulate ABAD/ 17β-HSD10 activity, two initial compound screens 

were performed. Reaction conditions consisted of ABAD enzyme (0.5 μg/mL, 18.52 nM), NADH (250 

μM), acetoacetyl-CoA (120 μM) and a single compound of interest (25 μM or 100 μM) (1% DMSO 

(v/v)). Solutions were prepared in assay buffer (10 mM HEPES buffer, pH 7.4 at 37 °C). Control 

solutions containing an equivalent concentration of DMSO (1% (v/v)) were also prepared and run 

concurrently. Reaction progression was measured via a decrease in NADH absorbance at 340 nm 

using a SpectraMAX M2e spectrophotometer. A reaction time of 200 s was employed yielding steady 

state conditions (R2 > 0.9). 

A test for compound active site cysteine residue binding was performed by comparing the 

inhibition observed with compounds 5 and 12 using the conditions described for the initial 

compound screen, in the presence and absence of DTT (5 mM). 

Dose Response Relative IC50 values were measured using the reaction conditions outlined 

for the initial compound screen, the inhibitory nature of promising compounds was assessed over a 

range of concentrations (250 μM to 10 nM). Statistical analysis was performed with using GraphPad 

Prism. 

To validate in-house ABAD assay, an IC50 curve was generated for compound AG18051 (the 

Kissinger inhibitor), a known potent inhibitor of the ABAD enzyme. An IC50 value of 69 nM was 

generated for compound AG18051 (Fig. 2), comparable to the 92 nM reported previously by 

Kissinger et al., using a cell based system [25], thus providing evidence that our screening assay is 

robust in  nature.  

 

Figure 2: Dose response for compound AG18051. Values shown are an average ± SEM taken from two 

experiments each with three technical repeats. 

2.4 QSAR analyses and Pharmacophore modelling 
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The relationship between the structures of the studied compound 1-15 and their inhibition 

potency towards ABAD/178-HSD10 was analysed by a systematic QSAR analysis. All compounds 

were prepared for QSAR analyses in HyperChem 8.0 [26]  by running a 10 ps long molecular dynamic 

simulation at constant temperature 310.15K (step 1 fs, bath relaxation time 0.1 ps) using a semi-

empirical method PM3. After the molecular dynamic simulation phase, the structures were 

geometrically optimized by Polak-Ribiére conjugate algorithm employing the same PM3 method 

with the convergence criterion set to 0.03 kcal/(Å.mol). The optimized structures along with the 

calculated Mulliken charges were imported into Dragon 6 program to generate 4885 various 

molecular descriptors (e.g. constitutional indices, topological indices, information indices, 2D matrix 

based  descriptors, geometrical descriptors, 3D-MoRSE descriptors, WHIM descriptors, GETAWAY 

descriptors, drug-like properties, etc.) [27]. The matrix of molecular descriptors and the relative 

ABAD/17β-HSD10 inhibitions caused by 25 mM were processed in a self-developed C++ based 

program Statoo using multiple linear regression (MLR) and an exhaustive combinatorial variable 

selection algorithm  evaluating every k-set of molecular descriptors [28]. With the respect to 

recommended ratio of 1 predictor to 5 or more compounds, we investigated all possible MLR QSAR 

models containing at most 3 molecular descriptors [29]. The final MLR QSAR top-scoring model was 

evaluated by leave-one-out, leave-30%-out cross-validation, and also by randomization and 

scrambling the vector of biological activities [30]. The domain of applicability of the best MLR QSAR 

model was checked by Williams plot in Matlab 2015.  

In order to reveal the most significant structural features of the studied compound for the 

observed biological activity (i.e. at concentration 25 mM), a pharmacophore analysis was performed. 

Initially, the models of 1-15 were prepared by quenched molecular dynamics (QMD) in Open3DAlign 

program [31], which uses Tinker to perform molecular mechanics calculations with MMFF94 force 

field. The QMD protocol was set to carry out a 10 ps simulation at 1000K in vacuum (step size 0.1 fs) 

and to minimize the geometry till the gradient achieved 0.001 kcal/(Å.mol) or the number of 

iterations exceeded 1000. For each compound in the set, a conformer library was prepared to be 

screened in 3D alignment process. A hybrid approach mixing Pharao pharmacophore-based [32] and 

LAMBDA-like [33] algorithms in Open3DAlign program was utilized to find the best superimposition 

of all the studied structures on compound 12. Within the alignment process, all combinations 

between 12 conformers and the other compounds’ conformers were aligned to find a 

superimposition exhibiting maximal O3A score [34]. The best molecular superimposition in the sense 

of the highest O3A score was investigated by a pharmacophore analysis in LigandScout 3.1 program 

to derive the substructure influencing most significantly the biological activity. The pharmacophore 

hypothesis was derived using the most active compounds as a training set.  
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2.5 Cell viability assessment 

The effect of compounds on the cell viability was examined using methodology combining 

LDH and MTT assay into one experimental setup. Such an assay has been chosen due to the fact 

that widely used MTT test is partially dependent on the mitochondrial oxidoreductases [35], whose 

activity might be influenced by the tested compounds targeted to mitochondria. The protocol for 

this assay has been described previously [36]. Briefly CHO cell line (Chinese hamster ovary, CHO-

K1WT2, CRL-1984 ECACC, Salisbury, UK) were cultured according to ECACC recommended 

conditions and seeded in a density of 8 000 cells per well as was described earlier [37]. Tested 

compounds were dissolved in DMSO and subsequently in the growth medium (F-12) 

supplemented with 1% PEN/STREP without FBS so that the final concentration of DMSO did not 

exceed 0.5% (v/v). Cells were exposed to a tested compound in the medium (100 µL) for 24 hours. 

Then 10 μL of MTT (2.5 mg/mL in buffer) was added and 50 μL of the culture supernatant was 

transferred to a new plate yet containing 50 μL of LDH substrate mixture consisting of lactate (2.5 

mg/mL), NAD (2.5 mg/mL), phenazine methansulphate (100 µM) and Triton X-100 (0.1%) in Tris–

HCl buffer (pH 8.2). LDH reaction mixture was incubated at 37 °C for 15-30 min until the difference 

between negative (no treatment) and positive control (0.1% Triton X-100) was obvious. Cellular 

fraction containing MTT was allowed to produce formazan for another approximately 3 h at 37°C. 

Thereafter, medium with MTT was removed and crystals of formazan were dissolved in DMSO (100 

µL). Absorbance was measured at 570 nm with 650 nm reference wavelength on Synergy HT 

reader (BioTek, USA) for both LDH and MTT fraction. IC50 was then calculated from the control - 

subtracted triplicates using non-linear regression (four parameters) of GraphPad Prism 5 software. 

Final IC50 and SEM value was obtained as a mean of at least 3 independent measurements (in 

triplicate). 

3. EXPERIMENTAL 

3.1 Chemical preparation 

2-aminobenzo[d]thiazole-6-carboxylate 

Ethyl 4-aminobenzoate (1 eq.) and KSCN (4 eq.) were dissolved in acetic acid (4 mL/mmol) 

and stirred at rt for 20 mins. Then the reaction mixture was cooled to 10 °C and bromine (2 eq.) 

dissolved in small amount of acetic acid was added dropwise. Afterwards the reaction mixture was 

left to warm up to rt and stirred overnight. After the reaction was completed (monitored by TLC), 

reaction mixture was added dropwise into the sat. aq. NH3 solution (15 mL/mmol) while cooling in 

an ice bath. The product was extracted to EtOAc and the organic layer was washed with Na2S2O3, 

sat. aq. NaHCO3 and brine, dried using anhydrous Na2SO4 and concentrated under reduced 

pressure. The crude product was either recrystallized from diethylether to obtain ethyl 2-

aminobenzo[d]thiazole-6-carboxylate in 69% yield. 
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1H NMR (500 MHz, DMSO-d6): δ (ppm) 8.27 (d, J = 1.8 Hz, 1H), 7.88 (s, 2H), 7.81 (dd, J = 8.4, 1.8 Hz, 

1H), 7.36 (d, J = 8.4 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). 

General procedure for synthesis of N-(benzo[d]thiazol-2-yl)-1H-imidazole-1-carboxamides 

Corresponding 2-aminobenzo[d]thiazole (1 eq.) was dissolved in a mixture of 

dimethylformamide (DMF) and dichloromethane (DCM) (1:6; 12 mL/mmol), 1,1’-carbonyldiimidazole 

(CDI; 1.2 eq.) was added and the reaction mixture was stirred vigorously at reflux overnight. The 

resulting precipitate was collected by filtration, washed with DCM and dried to obtain corresponding N-

(benzo[d]thiazol-2-yl)-1H-imidazole-1-carboxamide as a white solid in excellent yield (90 - 97 %). 

General procedure for synthesis of N-(benzo[d]thiazol-2-yl)-1H-imidazole-1-carbothioamides 

Corresponding 2-aminobenzo[d]thiazole (1 eq.) was dissolved in acetonitrile (MeCN; 5 

mL/mmol), 1,1’-thiocarbonyldiimidazole (SCDI; 1.2 eq.) was added and the reaction mixture was 

stirred at reflux overnight. The resulting precipitate was collected by filtration, washed with DCM 

and dried to obtain corresponding N-(benzo[d]thiazol-2-yl)-1H-imidazole-1-carbothioamide as a 

pale yellow solid in medium to excellent yield (65 - 95 %). 

General procedure for synthesis of 1-(benzo[d]thiazol-2-yl)-3-phenylureas resp. 1-(benzo[d]thiazol-2-

yl)-3-phenylthioureas 

Corresponding N-(benzo[d]thiazol-2-yl)-1H-imidazole-1-carboxamide resp. N-  

(benzo[d]thiazol-2-yl)-1H-imidazole-1-carbothioamide (1 eq.) was dissolved in DMF (8 mL/mmol), the 

corresponding aniline derivative (1.1 eq.) was added and the reaction mixture was stirred at 60 °C. 

After the reaction was completed (monitored by TLC), the reaction mixture was portioned with 1 M 

HCl aqueous solution (for carboxyl group containing aniline derivatives). The resulting precipitate was 

collected by filtration, washed with water and dried to obtain corresponding 1-(benzo[d]thiazol-2-yl)-

3-phenylurea or 1-(benzo[d]thiazol-2-yl)-3-phenylthiourea in medium to excellent yield (60 - 96 %). 

General procedure for synthesis of 1-(benzo[d]thiazol-2-yl)-3-phenylguanidines 

The corresponding thiourea derivative (1 eq.) was dissolved in 7N methanolic ammonia solution 

(12 mL/mmol), mercury oxide (3 eq.) was added and the reaction mixture was stirred at room 

temperature overnight. After the reaction was completed (monitored by TLC), the reaction mixture was 

filtered over Celite and washed with either THF or MeOH (40 mL/mmol). Evaporation of the filtrate gave 

corresponding guanidine in poor to good yield (10–79 %). In cases, where further purification was 

required, the procedure is described together with the respective compound’s characterization. 

10 



Preparation of hydrochloride salt from guanidine base 12 

The guanidine 12 was dissolved in THF, purged with diethylether saturated with gaseous 

hydrochloric acid and stirred for 1 h at 0 °C. The resulting precipitate was collected by filtration 

and washed with diethyl ether to obtain guanidine hydrochloride as white solid (90%). 

3.2 Prepared compounds and their characterization 

1-(6-methoxybenzo[d]thiazol-2-yl)-3-phenylurea (1, frentizole) 

M.p. 328–330 °C. Yield 91%. 1H NMR (500 MHz, DMSO-d6): δ (ppm) 10.68 (br s, 1H), 9.13 (br s, 1H), 

7.56 (d, J = 8.8 Hz, 1H), 7.54 – 7.47 (m, 3H), 7.33 (t, J = 7.9 Hz, 2H), 7.05 (t, J = 7.3 Hz, 1H), 6.98 (dd, 

J = 8.8, 2.6 Hz, 1H), 3.79 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ (ppm) 157.68, 155.87, 152.01, 

142.82, 138.66, 132.61, 129.10, 123.08, 120.29, 118.95, 114.55, 105.12, 55.78. ESI-HRMS: 

m/z300.07986 [M+H]+ (calc. for C15H13N3O2S: 300.08012[M+H]+). 

1-(6-methoxybenzo[d]thiazol-2-yl)-3-phenylthiourea (2) 

M.p. 198–200 °C. Yield 88%. 1H NMR (500 MHz, DMSO-d6): δ (ppm) 12.51 (br s, 1H), 10.80 (br s, 1H), 

7.70 (d, J = 7.9 Hz, 2H), 7.49 (m, 2H), 7.35 (t, J = 7.4 Hz, 2H), 7.14 (s, 1H), 7.02 (dd, J = 8.8, 2.3 Hz, 1H), 

3.79 (s, 3H); 13C NMR (126 MHz, DMSO-d6): δ (ppm) 181.42, 156.09, 139.38, 128.44, 124.17, 122.87, 

114.74, 105.93, 55.68; ESI-HRMS: m/z316.05685 [M+H]+ (calc. for C15H13N3OS2: 316.05728[M+H]+). 

1-(6-methoxybenzo[d]thiazol-2-yl)-3-phenylguanidine (3) 

The crude product was recrystallized from petroleum ether. 

M.p. 129.5–131 °C. Yield79 %. 1H NMR (500 MHz, DMSO-d6): δ (ppm) 9.04 (br s, 1H), 7.96 (br s, 2H), 

7.48 (dd, J = 8.5, 0.9 Hz, 2H), 7.46 (d, J = 8.8 Hz, 1H), 7.37 (d, J = 2.6 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.08 – 

7.01 (m, 1H), 6.90 (dd, J = 8.8, 2.7 Hz, 1H), 3.77 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ (ppm) 171.47, 

155.27, 153.69, 145.64, 138.93, 131.80, 128.82, 122.83, 120.68, 119.53, 113.54, 104.94, 55.52. ESI-

HRMS: m/z 299.09564 [M+H]+ (calc. for C15H14N4OS: 299.09611[M+H]+). 

1-(6-fluorobenzo[d]thiazol-2-yl)-3-phenylurea (4) 

M.p. 362.5–364.4 °C. Yield 76%. 1H NMR (500 MHz, DMSO-d6): δ (ppm) 10.77 (br s, 1H), 9.06 (br s, 1H), 

7.79 (dd, J = 8.7, 2.6 Hz, 1H), 7.71 – 7.61 (m, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.34 (t, J = 7.9 Hz, 2H), 7.21 (td, 

J = 9.2, 2.7 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H). 13C NMR (126 MHz, DMSO-d6): δ (ppm) 159.20, 158.14 (d, J = 

239.3 Hz), 151.64, 144.93, 138.10, 132.39, 128.63 (d, J = 15.5 Hz), 122.84 (d, J = 8.3 Hz), 120.28, 118.79 

(d, J = 16.6 Hz), 113.48 (dd, J = 24.3, 14.2 Hz), 107.70 (dd, J = 26.9, 13.5 Hz). ESI-HRMS: m/z288.05988 

[M+H]+ (calc. for C14H10FN3OS: 288.06014[M+H]+). 
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1-(6-fluorobenzo[d]thiazol-2-yl)-3-phenylthiourea (5) 

M.p. 302 °C decomp. Yield 84%. 1H NMR (300 MHz, DMSO-d6): δ (ppm) 12.52 (br s, 1H), 10.81 (br s, 

1H), 7.81 (dd, J = 9.0, 2.1 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.55 (s, 1H), 7.36 (t, J = 7.9 Hz, 2H), 7.27 (td, J 

= 9.2, 2.5 Hz, 1H), 7.21 – 7.06 (m, 1H); 13C NMR (75 MHz, DMSO-d6): δ (ppm) 180.89, 158.50 (d, J = 

239.2 Hz), 157.48, 139.25, 128.48, 124.52, 123.21, 114.37 (d, J = 24.6 Hz), 108.97 (d, J = 27.2 Hz); ESI-

HRMS: m/z304.03711 [M+H]+ (calc. for C14H10FN3S2: 304.03729[M+H]+). 

1-(6-fluorobenzo[d]thiazol-2-yl)-3-phenylguanidine (6) 

The crude product was recrystallized from petroleum ether/heptan. 

M.p. 166–168 °C. Yield 32%. 1H NMR (500 MHz, CD3OD): δ (ppm) 7.51 (dd, J = 8.8, 4.8 Hz, 1H), 7.44 – 7.33 

(m, 5H), 7.15 (tt, J = 7.4, 1.3 Hz, 1H), 7.03 (td, J = 9.1, 2.7 Hz, 1H). 13C NMR (126 MHz, CD3OD): δ (ppm) 

174.60, 160.27 (d, J = 239.6 Hz), 156.54, 149.69, 139.25, 133.70 (d, J = 10.7 Hz), 130.28, 125.78, 123.96, 

121.04 (d, J = 8.9 Hz), 114.00 (d, J = 24.3 Hz), 108.14 (d, J = 27.0 Hz). ESI-HRMS: m/z287.07584 [M+H]+ 

(calc. for C14H11FN4S: 287.07612[M+H]+). 

ethyl 2-(3-phenylureido)benzo[d]thiazole-6-carboxylate (7) 

M.p. 314–316 °C. Yield 59%. 1H NMR (500 MHz, DMSO-d6): δ (ppm) 11.12 (br s, 1H), 9.23 (br s, 1H), 8.56 

(d, J = 0.8 Hz, 1H), 7.97 (dd, J = 8.5, 1.8 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 7.7 Hz, 2H), 7.34 (t, J = 

7.9 Hz, 2H), 7.07 (t, J = 7.4 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, 

DMSO-d6): δ (ppm) 165.49, 162.76, 151.89, 138.25, 131.45, 128.93, 127.06, 124.17, 123.41, 123.13, 

119.08, 118.88, 60.64, 14.23. ESI-HRMS: m/z 342.09009 [M+H]+ (calc. for C17H15N3O3S: 342.09069[M+H]+) 

ethyl 2-(3-phenylthioureido)benzo[d]thiazole-6-carboxylate (8) 

M.p. 207.5–208.8 °C. Yield 88%. 1H NMR (500 MHz, DMSO-d6): δ (ppm) 10.61 (s, 1H), 8.48 (s, 1H), 7.99 

(dd, J = 8.4, 1.6 Hz, 1H), 7.69 (d, J = 7.9 Hz, 2H), 7.60 (s, 1H), 7.37 (t, J = 6.9 Hz, 2H), 7.16 (s, 1H), 4.33 (q, 

J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, DMSO-d6): δ (ppm) 181.89, 165.35, 156.99, 

139.18, 128.55, 128.48, 127.74, 124.73, 124.01, 123.41, 112.48, 60.79, 14.27. ESI-HRMS: 

m/z358.06760 [M+H]+ (calc. for C17H15N3O2S2: 358.06784[M+H]+). 

ethyl 2-(3-phenylguanidino)benzo[d]thiazole-6-carboxylate (9) 

The crude product was recrystallized from petroleum ether/heptan. 

M.p. 134–136 °C. Yield 28%. 1H NMR (500 MHz, DMSO-d6): δ (ppm) 9.31 (br s, 1H), 8.36 (s, 1H), 8.14 (br s, 

1H), 7.89 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 7.1 Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.10 (t, J 

= 7.1 Hz, 1H), 4.31 (dd, J = 14.0, 6.9 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, DMSO-

12 



d6): 6 (ppm) 176.24, 165.56, 155.35, 154.57, 138.31, 130.74, 128.93, 126.78, 123.54, 122.58, 121.43, 

118.38, 60.49, 14.23. ESI-HRMS: m/z341.10617 [M+H]+ (calc. for C17H16N4O2S: 341.10667[M+H]+). 

1-(6-methoxybenzo[d]thiazol-2-yl)-3-(4-methoxyphenyl)urea (10) 

M.p. 316–318 °C. Yield 87%. 1H NMR (500 MHz, DMSO-d6): 6 (ppm) 10.59 (br s, 1H), 8.94 (br s, 1H), 7.55 

(d, J = 8.7 Hz, 1H), 7.50 (d, J = 2.3 Hz, 1H), 7.41 (d, J = 8.7 Hz, 2H), 6.98 (dd, J = 8.7, 2.2 Hz, 1H), 6.91 (d, J 

= 8.8 Hz, 2H), 3.79 (s, 3H), 3.73 (s, 3H). 13C NMR (126 MHz, DMSO-d6): 6 (ppm) 157.57, 155.64, 155.20, 

151.87, 142.77, 132.48, 131.38, 120.70, 120.16, 114.30, 114.09, 104.92, 55.59, 55.20. ESI-HRMS: 

m/z330.09015 [M+H]+ (calc. for C16H15N3O3S: 330.09069[M+H]+). 

1-(6-methoxybenzo[d]thiazol-2-yl)-3-(4-methoxyphenyl)thiourea (11) 

M.p. 202.2–202.7 °C. Yield 90%. 1H NMR (500 MHz, DMSO-d6): 6 12.33 (br s, 1H), 11.04 (br s, 1H), 

7.60 – 7.40 (m, 4H), 7.01 (dd, J = 8.8, 2.6 Hz, 1H), 6.93 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 3.76 (s, 3H). 

13C NMR (126 MHz, DMSO-d6): 6 (ppm) 179.76, 160.68, 156.49, 156.06, 138.31, 132.03, 129.52, 

125.22, 118.05, 114.61, 113.63, 105.76, 55.66, 55.24. ESI-HRMS: m/z346.06763 [M+H]+ (calc. for 

C16H15N3O2S2: 346.06784[M+H]+). 

1-(6-methoxybenzo[d]thiazol-2-yl)-3-(4-methoxyphenyl)guanidine (12) 

M.p. 160.5–161.7 °C. Yield 72%. 1H NMR (500 MHz, DMSO-d6): 6 (ppm) 8.96 (br s, 1H), 7.82 (s, 1H), 7.43 

(d, J = 8.8 Hz, 1H), 7.37 – 7.29 (m, 3H), 6.96 – 6.91 (m, 2H), 6.89 (dd, J = 8.8, 2.6 Hz, 1H), 3.76 (s, 3H), 3.74 

(s, 3H). 13C NMR (126 MHz, DMSO-d6): 6 (ppm) 171.74, 155.71, 155.14, 154.33, 145.77, 131.66, 131.35, 

123.57, 119.28, 114.15, 113.37, 104.97, 55.51, 55.22. ESI-HRMS: m/z329.10632 [M+H]+
 (calc. for 

C16H16N4O2S: 329.10667[M+H]+). 

4-(3-(6-methoxybenzo[d]thiazol-2-yl)ureido)benzoic acid (13) 

M.p. 295 °C decomp. Yield 96%. 1H NMR (500 MHz, DMSO-d6): 6 (ppm) 10.52 (br s, 1H), 8.75 (br s, 

1H), 7.94 – 7.89 (m, 2H), 7.67 – 7.61 (m, 2H), 7.57 (d, J = 8.8 Hz, 1H), 7.53 (d, J = 2.6 Hz, 1H), 7.00 

(dd, J = 8.8, 2.6 Hz, 1H), 3.80 (s, 3H). 13C NMR (126 MHz, DMSO-d6): 6 (ppm) 166.96, 157.31, 155.83, 

152.10, 142.98, 141.94, 132.38, 130.65, 124.57, 120.06, 117.58, 114.56, 104.99, 55.67. ESI-

HRMS:m/z344.06989 [M+H]+ (calc. for C16H13N3O4S: 344.06995[M+H]+). 

4-(3-(6-methoxybenzo[d]thiazol-2-yl)thioureido)benzoic acid (14) 
M.p. 278 °C decomp. Yield 95%. 1H NMR (500 MHz, DMSO-d6): 6 (ppm) 12.67 (br s, 1H), 10.70 (br s, 
1H), 7.91 (m, 4H), 7.49 (d, J = 2.4 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H), 7.04 (dd, J = 8.8, 2.5 Hz, 1H), 3.80 
(s,3H).13C NMR (126 MHz, DMSO-d6): d (ppm) 182.47, 167.17, 156.08, 143.81, 132.24, 129.89, 
128.53, 



125.15, 120.84, 115.32, 114.89, 106.10, 55.70. ESI-HRMS:m/z360.04681 [M+H]+ (calc. for 

C16H13N3O3S2: 360.04711[M+H]+). 

4-(3-(6-methoxybenzo[d]thiazol-2-yl)guanidino)benzoic acid (15) 

The crude product was purified using column chromatography. 

M.p. 275–277 °C. Yield 17%. 1H NMR (500 MHz, DMSO-d6): δ (ppm) 12.61 (br s, 1H), 9.38 (br s, 1H), 8.12 

(br s, 2H), 7.91 – 7.87 (m, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.8 Hz, 1H), 7.40 (d, J = 2.6 Hz, 1H), 6.93 

(dd, J = 8.8, 2.6 Hz, 1H), 3.78 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ (ppm) 171.03, 167.10, 155.47, 

153.07, 145.49, 143.47, 132.04, 130.34, 124.30, 119.86, 118.95, 113.76, 104.94, 55.55. ESI-HRMS: 

m/z343.08539 [M+H]+ (calc. for C16H14N4O3S: 343.08594[M+H]+). 

4. RESULTS AND DISCUSSION 

Design of novel compounds originates from the previously identified ABAD/ 17β-HSD10 

modulator frentizole and its analogues [13–15].Our novel compounds consist of three substructural 

parts i.e. a benzothiazole moiety [38], a linker and a phenyl moiety (Fig. 3). The benzothiazole moiety 

was substituted in position 6 with a methoxy group (the same as is found in the parent compound 

frentizole), fluorine or an ethylcarboxyl group were used at the same position to investigate whether a 

change in spatial size, lipophilicity or amount of hydrogen bond acceptors/donors (HBA/HBD) in this 

part of the molecule would result in a change of inhibitory ability. Three different linkers where used to 

investigate difference(s) between a hydrophilic urea (H-bond acceptor; present in parent compound 

frentizole), guanidine (H-bond donor) linkers and the rather more lipophilic thiourea linker. The phenyl 

moiety was either non-substituted (similar to the parent compound frentizole) or substituted in the 4-

position with either a hydrophilic carboxyl and hydroxyl functional groups (capable of creating hydrogen 

bonds) or a slightly lipophilic methoxy moiety. Frentizole was also synthesized as a reference compound. 

 

Figure 3: Design of novel frentizole analogues. 

Generally, the synthesis started with activation of the corresponding 2-aminobenzo[d]thiazole 

using 1,1’-carbonyldiimidazole resp. 1,1’-thiocarbonyldiimidazole (Scheme 1),only the ethyl 
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2-aminobenzo[d]thiazole-6-carboxylate was prepared in a separate step by treating 4-

aminobenzoatewith potassium thiocyanate and bromine in acetic acid (Scheme 1) [39].In the next 

step, the reactive imidazolyl intermediate was treated with the corresponding aniline to obtain a 

non-symmetrically substituted urea or thiourea product (Scheme 1). 

 

Scheme 1: Synthesis of urea and thiourea derivatives. Reagents and conditions:(a) KSCN, Br2, 

AcOH, rt; (b1) CDI,DCM/DMF, reflux; (b2) SCDI, MeCN, reflux; (c) aromatic amine, DMF, 60°C. 

Guanidine analogues were prepared by treating corresponding thiourea with mercury oxide in 

methanolic ammonia solution (Scheme 2). Guanidine hydrochloride with improved solubility in water 

(suitable for potential in vivo testing) was prepared by stirring guanidine base 12 in mixture of diethyl 

ether and THF saturated by gaseous hydrochloric acid (Scheme 2). 

 

Scheme 2: Synthesis of guanidine analogues. Reagents and conditions: (a) NH3, HgO, MeOH, rt; (b) 

sat. HCl in THF, Et2O, rt. 

The ability of the synthesised compounds to modulate ABAD/17β-HSD10 activity was assessed 

by a spectrophotometric assay that was formerly outlined by Hroch et al. [24]. An initial compound screen 

was performed using each compound at 100 μM concentration. All tested compounds, except of the 

standard frentizole, were found to be capable to markedly decrease the activity of the ABAD enzyme, 

with nine compounds (2, 4, 5, 8, 9, 11–14) decreasing the activity by more than 50%.A subsequent 

compound screen was performed at 25 μM in an attempt to isolate the most potent inhibitors. At this 

lower concentration, compounds 2, 5, 9 and 12 were found to retain a similar level of inhibition as that 

seen at 100 μM, whilst the remaining inhibitors showed less marked inhibition (Table 1). Establishing of 

the SAR for the presented set of compounds was, however, a difficult task, as there were no clear 

correlations between the structure of compounds and their inhibitory activity. 
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There was only one observed trend when the thiourea linked compounds (e.g. 2 and 5) showed mostly 

higher potency compared to the analogous ureas and guanidines. Nevertheless, the best inhibition 

was found for the guanidine 12. Different substitutions of the benzothiazole and/or phenyl moieties 

of the parent frentizole had their effects on the compounds’ activity, but without any obvious logical 

order. 

Table 1: Relative ABAD/17β-HSD10 activity in the presence of each compound at concentrations of 100 

μM and 25 μM (presented as % of control ± SEM). Values shown are an average of two independent 

experiments, each with three technical repeats. 

 
 

Compound R1 R2 R3 

100 µM 25 µM 

(% Activity ± SEM) 

control --- --- --- 100.0 ± 0.11 100.0 ± 0.20 

frentizole (1) OMe O H 102.9 ± 2.98 97.4 ± 0.82 

2 OMe S H 34.8 ± 1.42 39.8 ± 0.44 

3 OMe NH H 61.8 ±5.87 57.9 ±3.91 

4 F O H 41.0 ± 0.61 69.2 ± 0.40 

5 F S H 23.9 ± 0.69 29.0 ± 0.23 

6 F NH H 81.0 ±4.78 86.6±1.43 

7 COOEt O H 64.3 ±1.56 79.2 ±1.60 

8 COOEt S H 36.6 ± 0.33 45.5 ± 0.33 

9 COOEt NH H 35.6 ±2.45 32.0±3.00 

10 OMe O OMe 62.2 ± 0.93 69.7 ± 0.42 

11 OMe S OMe 46.9 ± 1.50 60.9 ± 0.74 

12 OMe NH OMe 17.9 ± 0.71 17.0 ± 0.09 

13 OMe O COOH 41.1 ± 0.47 62.4 ± 0.29 

14 OMe S COOH 29.3 ± 0.76 47.0 ± 0.34 

15 OMe NH COOH 86.0 ±6.23 104.2 ±4.32  

To further assess the potency of the two most active inhibitors, compounds 5 and 12, ABAD/ 

17β-HSD10 activity was measured in the presence of increasing concentrations of the two inhibitors 
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and their IC50 values calculated using GraphPad Prism. Relative IC50 value of 3.06 ± 0.40 μM was 

found for compound 12 (Fig. 4). 

 

Figure 4:  IC50 determination for compound 12. 

Compound 5 produced an inconclusive dose response curve and a relative IC50 value could not 

be determined. Further analysis of this compound revealed that the inhibition was reversed upon the 

addition of dithiothreitol (DTT), indicating the inhibition is likely due to the formation of a disulphide bond 

to an active site cysteine residue (Fig. 5). The DMSO control and 12 showed little change in ABAD/ 17β -

HSD10 activity with inhibition remaining constant under the addition of DTT. However compound 5 

showed a reversal in ABAD/ 17β -HSD10 inhibition upon the addition of DTT with activity values nearly 

returning to the control levels. As many other enzymes exhibit similar properties containing active site 

cysteine residues (e.g. tyrosine phosphatises [40]) this could prove difficult to obtain specificity for 

ABAD/178-HSD10 for such type of thiourea linked compounds. From this point of view, the thiourea 

moiety seems to be unlikely used for further design of ABAD/ 17β -HSD10 inhibitors for the lack of 

specificity. 
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Figure 5: Relative ABAD/17β-HSD10 activity in the presence of each compound at concentrations of 25 

μM and 100 μM with and without the addition of 5 mM DTT (presented as % of control ± SEM). 

The cytotoxicity of the two most potent inhibitors 5 and 12 was assessed using LDH and MTT 

assay. Cytotoxicity assessment revealed that compound 12 is one order of magnitude less toxic when 

compared to 5 using two different assays and that its toxicity is at similar level and comparable to 

parent frentizole (Table 2). Both IC50 values obtained for 5 were found similar and it plausibly suggests 

that the compound 5does not affect the electron transport chain (ETC) of mitochondria (i.e. compound 

5 does not inhibit enzymes of ETC) [35]. Differently in the case of compound 12, the IC50 value obtained 

via a MTT assay was found lower than the LDH assay result, which could be hypothesized to its influence 

of ETC. However, only small differences between both assays were found that plausibly means only 

minor influence of mitochondrial ETC and should be further explored for this kind of molecules. 

Table 2: Cytotoxicity assessment of frentizole and the most promising inhibitors 5 and 12. 
 

Compound 
IC50 (µM ± SEM) 

LDH MTT  

frentizole 46 ± 6 38 ± 5 
 

5 3.5 ± 0.2 3.1 ± 0.4 

12 51 ± 11 23 ± 6  

The physical-chemical properties were calculated (ACDLabs PhysChem Suite 2014 [20]) and/or 

experimentally measured [41] for the two most potent compounds 5 and 12 and the parent compound 

frentizole (Table 3). The obtained data were compared with optimal properties for CNS targeted drugs 
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[42–44]. All compounds complied with the optimal values for molecular weight, H-bond 

acceptors/donors, number of rotatable bonds and ClogP/ElogP values. CLogD7.4/ELogD7.4 values 

slightly diverged from the optimal range in case of 5 and 12 and all three compounds showed 

higher than optimal values of total polar surface area (tPSA). Regarding solubility, then only 

compound 5 did not fit the optimal range for the calculated logS7.4. Generally, a good correlation 

between the experimental and calculated logP and logD7.4 values was found. Taken together, the 

compounds 5 and 12 were predicted to penetrate the blood-brain barrier and thus might act within 

the CNS. However, for future structural design, it will be advantageous to improve some of the 

physical-chemical properties, especially the tPSA. 

Table 3: Physical-chemical properties of frentizole and the most potent I nhibitors 5 and 12 compared 

to optimal values for CNS targeted drugs [42–44]. 
 

Compound Mw 
H-bond  

acceptor/donor 
Rot. bonds tPSA (Å2) ClogP ELogP±SD ClogD7.4 ELogD7.4 ± SD ClogS7.4 

Optimum ≤450 ≤7/≤3 <8 ≤(60-70) 1-5 1-5 0-3 0-3 >(-4.5) 

frentizole 299.35 5/2 3 91.49 3.2 nd 2.5 nd -3.7 

5 303.38 3/2 4 97.28 3.5 4.1 ± 0.4%o 3.5 4.1 ± 1.2%o -4.6 

12 328.39 6/3 6 107.50 3.3 3.4 ± 0.5%o 3.2 3.4 ± 0.1%o -3.6 

* nd = not determined 

QSAR analyses employing MLR and a systematic variable selection algorithm provided 

statistically significant and robust model for prediction of the ABAD/ 17 β -HSD10 inhibition at the 

inhibitor concentration of 25 mM. In Table 4, the selected molecular descriptors, regression  

coefficients b, standard deviations of regression coefficients (STD(b)), Student’s t’s, and coefficients of 

determination V2 for prediction of the variable by the others variables in the model. According to  

Student’s t’s, all the selected molecular descriptors are statistically significant, although relatively high  

values of V2 reveal considerable inter-correlation between the predictors Mv, JGI6 and Vs.  

Table 4: Description of the best MLR QSAR model for compounds 1-15 and their inhibition activities 

towards ABAD/ 17β-HSD10. 
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Statistical criteria for the best three parametric MLR QSAR model found, such as coefficient  

of determination R2, Fisher-Snedecor F, standard residual deviation s, adjusted coefficient of 

determination R2
adj, adjusted Fisher-Snedecor FIT, and cross-validated coefficient of determinations by 

leave-one-out Q2
LOO and leave-30%-out Q2

LMO-30% techniques, are summarized in Table 5. Q2LMO-30% values 

were determined as a mean value of 1000 repetitions of random selection of 30% compounds from 

the complete set of 1-15. The relationship between the real and predicted inhibition potencies of the 

compounds is outlined in Fig.  6. 

Figure 6: Real and calculated inhibition potencies of compounds 1-15 by the best MLR QSAR model. 

Besides cross-validations of the best QSAR model, we also evaluated the model 

performance after replacement of the y vector of inhibition potencies by random variables with 

normal distribution  (i.e. randomized y) or by its random permutation (i.e. scrambled y). Since 

randomization and scrambling might provide a vector with similar values to the original vector, 

coefficients of determination for the altered and real biological activities are mentioned as R2
r/o 

and R2
s/o in Table 5.  High values of R2 and F confirm that the QSAR model is internally predictive 

and statistically significant.  Robustness of the model is proved by very high values of cross-

validated coefficients of determination  

Vs 2.537 0.18438 13.759 0.8130 
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Q2
LOO and Q2

LMO-30%. Drop of all these statistical criteria after randomization and scrambling further 

confirms that the QSAR model is capable to discriminate chance factors in the input. However, the 

QSAR model was built on 15 compound and a pool of several thousand molecular descriptors, and, 

thus, it has to be taken with caution.  

Table 5: Statistical criteria for the best MLR QSAR model representing compounds 1-15 and their 

inhibition activities towards ABAD/ 17β-HSD10. 

The domain of applicability of the best QSAR model was demonstrated by William’s plot, which displays 

possible outliers in a conjugate chemical space of the biological activities and the selected molecular 

descriptors (Fig.  7). Only compound 12, which exhibited the strongest inhibition activity for ABAD/ 

17β-HSD10, is relatively distant from the main cluster of compounds. In general, the QSAR model is 

well representative for the solved problem.  
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Figure 7: William’s plot representing compounds 1-15 in a projection of the chemical space 

delimited by the MLR QSAR model. No compounds studied exhibit significant outlying, which 

confirms suitability of the model definition.  

The above-mentioned statistical validations clearly showed that the developed MLR QSAR 

model is significant, robust and applicable for ABAD/17β-HSD10 inhibition predictions. The model 

is built only of three variables: Mv - mean atomic van der Waals volume scaled on carbon atom, 

JGI6 - mean topological charge index of order 6, and Vs - V total size index weighted by I-state, 

which enables relatively simple interpretation. If Mv is higher, the observed inhibition potency for 

ABAD/17β-HSD10 is stronger. This feature may be implied if the carbonyl group is replaced by 

thiocarbonyl or imino functions. JGI6 descriptor expresses the total charge transfer between 

atoms at topological distance of 6, and, thus, it is closely related with substitutions at peripheral 

molecular sites and molecular polarity. The higher the charge transfer (i.e. JGI6), the stronger 

inhibition of ABAD/17β-HSD10 is elicited. JGI6 descriptor achieves maximal values for compounds 

7-12, which are substituted with two 4-methoxy or one 4-ethyl carboxylate functions. On the other 

hand, Vs molecular descriptor, which belongs to WHIM group, should be less in order to support 

the inhibition activity. As Vs reflect the spatial molecular extent, a smaller molecules may induce 

a stronger inhibition. Nonetheless, Mv and Vs have opposite meaning which suggests that a certain 

optimum of atomic and total molecular size needs to be found.  
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Pharmacophore analysis of the studied compounds 1-15 in LigandScout 3.1 provided 

another insight into the relationships between the structure and activity of ABAD/17β-HSD10 

inhibitors. By training on the most active substances, a pharmacophore hypothesis was derived 

and all the compounds were scored according to their fit to it. In Fig.  8., an alignment of 

compounds 5 and 12 with the proposed pharmacophore is demonstrated. Since the set of studied 

compounds exhibit a high degree of structural similarity, discrimination of inactive structural cores 

could not fully manifest in the calculations. The present pharmacophore analysis indicated 

practically the whole structure of compounds 5 or 12 as a pharmacophore. Discriminative power 

of the pharmacophore model was achieved mainly due to defining exclusion volumes, which 

enabled differentiation of the most active  compounds (e.g. 5, 12, 9) from the least active ones 

(e.g. 15, 1). Unfortunately, a robust pharmacophore-based QSAR model giving correct 

classification all the tested compounds 1-15 according to their inhibition potency was not achieved 

by this methodology.  

 

Figure  8: A pharmacophore hypothesis derived in LigandScout 3.1 with aligned compounds 5 and 

12.  In the right part of the figure, proposed non-covalent interactions (HBA – hydrogen bond 

acceptor, HBD – hydrogen bond donor, AR – aromatic interaction, H – hydrophobic interactions, 

PI – positively ionisable group) of the ligands with a putative receptor are outlined.  
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CONCLUSION 

In summary, a series of novel ABAD/ 17β-HSD10 inhibitors, analogues of frentizole, have been 

designed, synthesized and evaluated in vitro. Among the 15 prepared compounds, compound 12 was 

found the most promising hit with good inhibitory activity (IC50 = 3.06 ± 0.40 µM) and acceptable 

cytotoxicity profile comparable to the parent frentizole. Together with satisfying physical-chemical 

properties suggesting its capability to permeate through BBB, compound 12 presents a novel lead 

structure for further research and development. On the other hand, compounds encompassing the 

thiourea linker in their structure were found to be improper leads for further development despite their 

good inhibitory activity as they were suggested to act via an unspecific manner and they are possibly 

creating a disulphide bond with the protein’s cysteine residues. 
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