4,470 research outputs found

    Ground-state properties and symmetry energy of neutron-rich and neutron-deficient Mg isotopes

    Get PDF
    A comprehensive study of various ground-state properties of neutron-rich and neutron-deficient Mg isotopes with AA=20-36 is performed in the framework of the self-consistent deformed Skyrme-Hartree-Fock plus BCS method. The correlation between the skin thickness and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for this isotopic chain following the theoretical approach based on the coherent density fluctuation model and using the Brueckner energy-density functional. The results of the calculations show that the behavior of the nuclear charge radii and the nuclear symmetry energy in the Mg isotopic chain is closely related to the nuclear deformation. We also study, within our theoretical scheme, the emergence of an "island of inversion" at neutron-rich 32^{32}Mg nucleus, that was recently proposed from the analyses of spectroscopic measurements of 32^{32}Mg low-lying energy spectrum and the charge rms radii of all magnesium isotopes in the sdsd shell.Comment: 13 pages, 13 figures, to be published in Physical Review

    Structural transitions in vertically and horizontally coupled parabolic channels of Wigner crystals

    Full text link
    Structural phase transitions in two vertically or horizontally coupled channels of strongly interacting particles are investigated. The particles are free to move in the xx-direction but are confined by a parabolic potential in the yy-direction. They interact with each other through a screened power-law potential (rner/λr^{-n}e^{-r/\lambda}). In vertically coupled systems the channels are stacked above each other in the direction perpendicular to the (x,y)(x,y)-plane, while in horizontally coupled systems both channels are aligned in the confinement direction. Using Monte Carlo (MC) simulations we obtain the ground state configurations and the structural transitions as a function of the linear particle density and the separation between the channels. At zero temperature the vertically coupled system exhibits a rich phase diagram with continuous and discontinuous transitions. On the other hand the vertically coupled system exhibits only a very limited number of phase transitions due to its symmetry. Further we calculated the normal modes for the Wigner crystals in both cases. From MC simulations we found that in the case of vertically coupled systems the zigzag transition is only possible for low densities. A Ginzburg-Landau theory for the zigzag transition is presented, which predicts correctly the behavior of this transition from which we interpret the structural phase transition of the Wigner crystal through the reduction of the Brillouin zone.Comment: 9 pages, 13 figure

    Nuclear skin emergence in Skyrme deformed Hartree-Fock calculations

    Get PDF
    A study of the charge and matter densities and the corresponding rms radii for even-even isotopes of Ni, Kr, and Sn has been performed in the framework of deformed self-consistent mean field Skyrme HF+BCS method. The resulting charge radii and neutron skin thicknesses of these nuclei are compared with available experimental data, as well as with other theoretical predictions. The formation of a neutron skin, which manifests itself in an excess of neutrons at distances greater than the radius of the proton distribution, is analyzed in terms of various definitions. Formation of a proton skin is shown to be unlikely. The effects of deformation on the neutron skins in even-even deformed nuclei far from the stability line are discussed.Comment: 16 pages, 17 figures, to be published in Physical Review

    Temperature dependence of the volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    Get PDF
    The temperature dependence of the volume and surface components of the nuclear symmetry energy (NSE) and their ratio is investigated in the framework of the local density approximation (LDA). The results of these quantities for finite nuclei are obtained within the coherent density fluctuation model (CDFM). The CDFM weight function is obtained using the temperature-dependent proton and neutron densities calculated through the HFBTHO code that solves the nuclear Skyrme-Hartree-Fock-Bogoliubov problem by using the cylindrical transformed deformed harmonic-oscillator basis. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains around double-magic 78^{78}Ni, 132^{132}Sn, and 208^{208}Pb nuclei. The results for the TT-dependence of the considered quantities are compared with estimations made previously for zero temperature showing the behavior of the NSE components and their ratio, as well as with the available experimental data. The sensitivity of the results on various forms of the density dependence of the symmetry energy is studied. We confirm the existence of `kinks' of these quantities as functions of the mass number at T=0T=0 MeV for the double closed-shell nuclei 78^{78}Ni and 132^{132}Sn and the lack of `kinks' for the Pb isotopes, as well as the disappearance of these kinks as the temperature increases.Comment: 14 pages, 12 figures, 1 table, accepted for publication in Physical Review

    Recovering coherence from decoherence: a method of quantum state reconstruction

    Get PDF
    We present a feasible scheme for reconstructing the quantum state of a field prepared inside a lossy cavity. Quantum coherences are normally destroyed by dissipation, but we show that at zero temperature we are able to retrieve enough information about the initial state, making possible to recover its Wigner function as well as other quasiprobabilities. We provide a numerical simulation of a Schroedinger cat state reconstruction.Comment: 8 pages, in RevTeX, 4 figures, accepted for publication in Phys. Rev. A (november 1999

    Symmetry energy of deformed neutron-rich nuclei

    Get PDF
    The symmetry energy, the neutron pressure and the asymmetric compressibility of deformed neutron-rich even-even nuclei are calculated on the examples of Kr and Sm isotopes within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the self-consistent Skyrme-Hartree-Fock plus BCS method. Results for an extended chain of Pb isotopes are also presented. A remarkable difference is found in the trend followed by the different isotopic chains: the studied correlations reveal a smoother behavior in the Pb case than in the other cases. We also notice that the neutron skin thickness obtained for 208^{208}Pb with SLy4 force is found to be in a good agreement with recent data.Comment: 14 pages, 10 figures, 2 tables, accepted for publication in Physical Review

    Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In

    Get PDF
    Applying a magnetic field to a ferromagnetic Ni50_{50}Mn34_{34}In16_{16} alloy in the martensitic state induces a structural phase transition to the austenitic state. This is accompanied by a strain which recovers on removing the magnetic field giving the system a magnetically superelastic character. A further property of this alloy is that it also shows the inverse magnetocaloric effect. The magnetic superelasticity and the inverse magnetocaloric effect in Ni-Mn-In and their association with the first order structural transition is studied by magnetization, strain, and neutron diffraction studies under magnetic field.Comment: 6 pages, 8 figures. Published in the Physical Review

    Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In

    Get PDF
    Applying a magnetic field to a ferromagnetic Ni50_{50}Mn34_{34}In16_{16} alloy in the martensitic state induces a structural phase transition to the austenitic state. This is accompanied by a strain which recovers on removing the magnetic field giving the system a magnetically superelastic character. A further property of this alloy is that it also shows the inverse magnetocaloric effect. The magnetic superelasticity and the inverse magnetocaloric effect in Ni-Mn-In and their association with the first order structural transition is studied by magnetization, strain, and neutron diffraction studies under magnetic field.Comment: 6 pages, 8 figures. Published in the Physical Review

    A deformed QRPA formalism for single and two-neutrino double beta decay

    Full text link
    We use a deformed QRPA formalism to describe simultaneously the energy distributions of the single beta Gamow-Teller strength and the two-neutrino double beta decay matrix elements. Calculations are performed in a series of double beta decay partners with A = 48, 76, 82, 96, 100, 116, 128, 130, 136 and 150, using deformed Woods-Saxon potentials and deformed Skyrme Hartree-Fock mean fields. The formalism includes a quasiparticle deformed basis and residual spin-isospin forces in the particle-hole and particle-particle channels. We discuss the sensitivity of the parent and daughter Gamow-Teller strength distributions in single beta decay, as well as the sensitivity of the double beta decay matrix elements to the deformed mean field and to the residual interactions. Nuclear deformation is found to be a mechanism of suppression of the two-neutrino double beta decay. The double beta decay matrix elements are found to have maximum values for about equal deformations of parent and daughter nuclei. They decrease rapidly when differences in deformations increase. We remark the importance of a proper simultaneous description of both double beta decay and single Gamow-Teller strength distributions. Finally, we conclude that for further progress in the field it would be useful to improve and complete the experimental information on the studied Gamow-Teller strengths and nuclear deformations.Comment: 33 pages, 19 figures. To be published in Phys. Rev.
    corecore