445 research outputs found

    Absorption Spectrum of the NO Molecule. V - Survey of Excited States and Their Interactions

    Get PDF
    High resolution absorption spectrograms of excited nitrogen oxide molecular interaction

    The Involvement of RCAS1 in Creating a Suppressive Tumor Microenvironment in Patients with Salivary Gland Adenocarcinoma

    Get PDF
    The tumor microenvironment is the tissue that determines the growth and progression of the tumor as well as its ability to initiate metastases. The aim of the present study has been to evaluate the role of RCAS1 in creating the suppressive tumor microenvironment in cases of parotid adenocarcinoma. The tissue samples of salivary gland adenocarcinomas and their stroma and the palatine tonsils which constituted the reference tissue sample group were obtained during routine surgical procedures. The immunoreactivity of RCAS1, CD3, CD25, CD68, CD69, and Foxp3 antigens was then evaluated by using the immunohistochemistry method. The patient’s consent was obtained in each case. A statistically significantly higher RCAS1 immunoreactivity level was found in the adenocarcinoma tissue samples in comparison to that found in the stromal tissue samples. A statistically significantly higher RCAS1 immunoreactivity was also identified in the adenocarcinoma tissue samples derived from patients who had lymph node metastases in comparison to patients without such metastases. Additionally, we observed the presence of RCAS1-positive macrophages in the stromal tissue samples. The infiltration of CD68-positive cells was significantly stronger in the adenocarcinoma and stromal tissue slides than in the reference group tissue slides; moreover, the infiltration was a good deal more prominent in the stromal tissue than in the adenocarcinoma tissue. The CD68 immunoreactivity levels in both the tumor and stromal tissue samples were found to be significantly higher in those patients who had lymph node metastases than in the patients without such metastases. Additionally, the infiltration of CD3- and CD25-positive cells was more prominent in the reference tissue slides than in the adenocarcinoma and stromal tissue slides, and was stronger in the adenocarcinoma tissue than in the stromal tissue. Furthermore, the infiltration of Foxp3-positive cells was seen exclusively in the stroma whereas it was not even detected in the adenocarcinoma tissue. Lastly, the Foxp3-positive cell infiltration was more prominent in the stromal tissue than in the reference group tissue. The present study demonstrates that RCAS1 expression by both tumor cells and tumor-associated macrophages may participate in creating the immunosuppressive microenvironment in parotid gland adenocarcinoma, thus promoting tumor development as well as metastases

    Persistence of tumor-infiltrating CD8 T cells is tumor-dependent but antigen-independent

    Get PDF
    How tumor-infiltrating lymphocytes (TILs) that are tumor-specific but functionally tolerant persist in the antigen-expressing tumor tissue is largely unknown. We have previously developed a modified TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model where prostate cancer cells express the T-cell epitope SIYRYYGL (SIY) recognized by CD8 T cells expressing the 2C T-cell receptor (TCR) (referred to as TRP-SIY mice). In TRP-SIY mice, activated 2C T cells rapidly become tolerant following infiltration into the prostate tumor. In this study, we show that tolerant 2C T cells persist in the prostate tumor of TRP-SIY mice by proliferating slowly in a tumor-dependent, but antigen-, interleukin (IL)-7- and IL-15-independent manner. We also show that disappearance of 2C T cells from the lymphoid organs of TRP-SIY mice are due to antigen-induced T-cell contraction rather than altered trafficking or generalized T-cell depletion in the mice. Finally, we show that clonal T cells unreactive to SIY are equally capable of persisting in the prostate tumor. These findings suggest that while functional tolerance of TILs is induced by antigen, persistence of tolerant TILs in the tumor tissue is mediated by a novel mechanism: slow proliferation independent of antigen and homeostatic cytokines. These results also allow CD8 T-cell survival in the tumor environment to be compared with T-cell survival in chronic infection

    Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibody-dependent cellular cytotoxicity (ADCC) has recently been identified as one of the critical mechanisms underlying the clinical efficacy of therapeutic antibodies, especially anticancer antibodies. Therapeutic antibodies fully lacking the core fucose of the Fc oligosaccharides have been found to exhibit much higher ADCC in humans than their fucosylated counterparts. However, data which show how fully non-fucosylated antibodies achieve such a high ADCC in human whole blood have not yet been disclosed. The precise mechanisms responsible for the high ADCC mediated by fully non-fucosylated therapeutic antibodies, even in the presence of human plasma, should be explained based on direct evidence of non-fucosylated antibody action in human blood.</p> <p>Methods</p> <p>Using a human <it>ex vivo </it>B-cell depletion assay with non-fucosylated and fucosylated anti-CD20 IgG1s rituximab, we monitored the binding of the therapeutic agents both to antigens on target cells (target side interaction) and to leukocyte receptors (FcγR) on effector cells (effector side interaction), comparing the intensities of ADCC in human blood.</p> <p>Results</p> <p>In the target side interaction, down-modulation of CD20 on B cells mediated by anti-CD20 was not observed. Simple competition for binding to the antigens on target B cells between fucosylated and non-fucosylated anti-CD20s was detected in human blood to cause inhibition of the enhanced ADCC of non-fucosylated anti-CD20 by fucosylated anti-CD20. In the effector side interaction, non-fucosylated anti-CD20 showed sufficiently high FcγRIIIa binding activity to overcome competition from plasma IgG for binding to FcγRIIIa on natural killer (NK) cells, whereas the binding of fucosylated anti-CD20 to FcγRIIIa was almost abolished in the presence of human plasma and failed to recruit NK cells effectively. The core fucosylation levels of individual serum IgG1 from healthy donors was found to be so slightly different that it did not affect the inhibitory effect on the ADCC of fucosylated anti-CD20.</p> <p>Conclusion</p> <p>Our results demonstrate that removal of fucosylated antibody ingredients from antibody therapeutics elicits high ADCC in human blood by two mechanisms: namely, by evading the inhibitory effects both of plasma IgG on FcγRIIIa binding (effector side interaction) and of fucosylated antibodies on antigen binding (target side interaction).</p

    Increased Lysis of Stem Cells but Not Their Differentiated Cells by Natural Killer Cells; De-Differentiation or Reprogramming Activates NK Cells

    Get PDF
    The aims of this study are to demonstrate the increased lysis of stem cells but not their differentiated counterparts by the NK cells and to determine whether disturbance in cell differentiation is a cause for increased sensitivity to NK cell mediated cytotoxicity. Increased cytotoxicity and augmented secretion of IFN-γ were both observed when PBMCs or NK cells were co-incubated with primary UCLA oral squamous carcinoma stem cells (UCLA-OSCSCs) when compared to differentiated UCLA oral squamous carcinoma cells (UCLA-OSCCs). In addition, human embryonic stem cells (hESCs) were also lysed greatly by the NK cells. Moreover, NK cells were found to lyse human Mesenchymal Stem Cells (hMSCs), human dental pulp stem cells (hDPSCs) and human induced pluripotent stem cells (hiPSCs) significantly more than their differentiated counterparts or parental lines from which they were derived. It was also found that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or targeted knock down of COX2 in monocytes significantly augmented NK cell cytotoxicity and secretion of IFN-γ. Taken together, these results suggest that stem cells are significant targets of the NK cell cytotoxicity. However, to support differentiation of a subset of tumor or healthy untransformed primary stem cells, NK cells may be required to lyse a number of stem cells and/or those which are either defective or incapable of full differentiation in order to lose their cytotoxic function and gain the ability to secrete cytokines (split anergy). Therefore, patients with cancer may benefit from repeated allogeneic NK cell transplantation for specific elimination of cancer stem cells
    corecore