27 research outputs found
DS-KCF: a real-time tracker for RGB-D data
© 2016 The Author(s) We propose an RGB-D single-object tracker, built upon the extremely fast RGB-only KCF tracker that is able to exploit depth information to handle scale changes, occlusions, and shape changes. Despite the computational demands of the extra functionalities, we still achieve real-time performance rates of 35–43 fps in MATLAB and 187 fps in our C++ implementation. Our proposed method includes fast depth-based target object segmentation that enables, (1) efficient scale change handling within the KCF core functionality in the Fourier domain, (2) the detection of occlusions by temporal analysis of the target’s depth distribution, and (3) the estimation of a target’s change of shape through the temporal evolution of its segmented silhouette allows. Finally, we provide an in-depth analysis of the factors affecting the throughput and precision of our proposed tracker and perform extensive comparative analysis. Both the MATLAB and C++ versions of our software are available in the public domain
Synthesis of indium nanoparticles at ambient temperature; simultaneous phase transfer and ripening
Regional frequency analysis of extreme rainfalls in the west coast of Peninsular Malaysia using partial l-moments
This study was to reinstate the development of regional frequency analysis using L-moments approach. The Partial L-moments (PL-moments) method was employed and a new relationship for homogeneity analysis is developed. For this study, the PL-moments for generalized logistic (GLO), generalized pareto (GPA) and generalized value (GEV) distributions were derived based on the formula defined by Wang (Water Resour Res 32:1767-1771, 1996). The three distributions are used to develop the regional frequency analysis procedures. As a case of study, the Selangor catchment that consists of 30 sites which located on the west coast of Peninsular Malaysia has chosen as sample. Based on L-moment and PL-moment ratio diagrams as well as Z-test statistics, the GEV and GLO were identified as the best distributions to represent the statistical properties of extreme rainfalls in Selangor. Monte Carlo simulation shows that the method of PL-moments would outperform L-moments method for estimation of large returns period event
Regional frequency analysis of extreme rainfalls using partial L moments method
An approach based on regional frequency analysis using L moments and LH moments are revisited in this study. Subsequently, an alternative regional frequency analysis using the partial L moments (PL moments) method is employed, and a new relationship for homogeneity analysis is developed. The results were then compared with those obtained using the method of L moments and LH moments of order two. The Selangor catchment, consisting of 37 sites and located on the west coast of Peninsular Malaysia, is chosen as a case study. PL moments for the generalized extreme value (GEV), generalized logistic (GLO), and generalized Pareto distributions were derived and used to develop the regional frequency analysis procedure. PL moment ratio diagram and Z test were employed in determining the best-fit distribution. Comparison between the three approaches showed that GLO and GEV distributions were identified as the suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation used for performance evaluation shows that the method of PL moments would outperform L and LH moments methods for estimation of large return period events
MS3D: mean-shift object tracking boosted by joint back projection of color and depth
In this paper, we present MS3D tracker, which extends the mean-shift tracking algorithm in several ways when RGB-D data is available. We fuse color and depth distribution efficiently in the mean-shift tracking scheme. In addition, in order to improve the robustness of the description of the object to be tracked, we further process the pixels in the rectangular region of interest (ROI) returned by mean-shift. We apply depth distribution analysis to pixels of the ROI in order to separate background pixels from pixels belonging to the object to be tracked (i.e. the target region). Then, we use the color histogram of the target region and its surroundings to create a discriminative color model, which has the capability to distinguish the object from background. The proposed algorithm is evaluated on the RGB-D tracking dataset proposed by [1]. It ranked in the first position and it runs in real-time showing both accuracy and robustness in the challenge sequences of background clutter, occlusion, scale variation and shape deformation
Electron Transfer and Modification of Oligosilanylsilatranes and Related Derivatives
International audienceSeveral silatranyl -substituted oligosilanes were prepared starting from bis(trimethylsilyl)silatranylsilanide. Electrochemical and theoretical investigations of some oligosilanes revealed that electrooxidation occurs by formation of a short-lived cation radical. This species undergoes structural relaxation to form a pair of conformers, with endo and exo relationships with respect to the Si-N interaction. Reaction of a 1,4-disilatranyl-1,4-disilanide with 1,2-dichlorotetramethyldisilane gave a mixture of cis and trans diastereomers of a cyclohexasilane with the trans isomer showing a diminished Si-N distance
