815 research outputs found
Neutrinos from photo-hadronic interactions in Pks2155-304
The high-peaked BL Lac object Pks2155-304 shows high variability at
multiwavelengths, i.e. from optical up to TeV energies. A giant flare of around
1 hour at X-ray and TeV energies was observed in 2006. In this context, it is
essential to understand the physical processes in terms of the primary spectrum
and the radiation emitted, since high-energy emission can arise in both
leptonic and hadronic processes. In this contribution, we investigate the
possibility of neutrino production in photo-hadronic interactions. In
particular, we predict a direct correlation between optical and TeV energies at
sufficiently high optical radiation fields. We show that in the blazar
Pks2155-304, the optical emission in the low-state is sufficient to lead to
photo-hadronic interactions and therefore to the production of high-energy
photons.Comment: contribution to RICAP 2009 and ICRC 2009 - both papers are combined
in one draft. 11 pages, 3 figure
Magnetic Field Generation in Core-Sheath Jets via the Kinetic Kelvin-Helmholtz Instability
We have investigated magnetic field generation in velocity shears via the
kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet
core and stationary plasma sheath. Our three-dimensional particle-in-cell
simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15
for both electron-proton and electron-positron plasmas. For electron-proton
plasmas we find generation of strong large-scale DC currents and magnetic
fields which extend over the entire shear-surface and reach thicknesses of a
few tens of electron skin depths. For electron-positron plasmas we find
generation of alternating currents and magnetic fields. Jet and sheath plasmas
are accelerated across the shear surface in the strong magnetic fields
generated by the kKHI. The mixing of jet and sheath plasmas generates
transverse structure similar to that produced by the Weibel instability.Comment: 28 pages, 12 figures, in press, ApJ, September 10, 201
Peroxisome proliferator-activated receptor alpha plays a crucial role in behavioral repetition and cognitive flexibility in mice
Acknowledgments We thank Luca Giordano, Giovanni Esposito and Angelo Russo for technical assistance and Dr. Livio Luongo (Second University of Naples–Italy) for critical discussions. This work was supported by a Grant PRIN from Ministry of Education, Universities and Research (MIUR), Italy, to A.C. and the Wellcome Trust (WT098012) to L.K.H. and BBSRC (BB/K001418/1) to L.K.H. and G.D’A. G.D’A. received partial supports from a “FORGIARE” post-doctoral fellowship cofounded by the Polo delle Scienze e Tecnologie per la Vita, University of Naples Federico II and Compagnia di San Paolo Foundation, Turin, Italy (2010–2012).Peer reviewedPublisher PD
Active Galactic Nuclei with Starbursts: Sources for Ultra High Energy Cosmic Rays
Ultra high energy cosmic ray events presently show a spectrum, which we
interpret here as galactic cosmic rays due to a starburst in the radio galaxy
Cen A pushed up in energy by the shock of a relativistic jet. The knee feature
and the particles with energy immediately higher in galactic cosmic rays then
turn into the bulk of ultra high energy cosmic rays. This entails that all
ultra high energy cosmic rays are heavy nuclei. This picture is viable if the
majority of the observed ultra high energy events come from the radio galaxy
Cen A, and are scattered by intergalactic magnetic fields across most of the
sky.Comment: 4 pages, 1 figure, proceedings of "High-Energy Gamma-rays and
Neutrinos from Extra-Galactic Sources", Heidelber
Evolution of Global Relativistic Jets: Collimations and Expansion with kKHI and the Weibel Instability
One of the key open questions in the study of relativistic jets is their
interaction with the environment. Here, we study the initial evolution of both
electron-proton and electron-positron relativistic jets, focusing on their
lateral interaction with the ambient plasma. We trace the generation and
evolution of the toroidal magnetic field generated by both kinetic
Kelvin-Helmholtz (kKH) and Mushroom instabilities (MI). This magnetic field
collimates the jet. We show that in electron-proton jet, electrons are
perpendicularly accelerated with jet collimation. The magnetic polarity
switches from the clockwise to anti-clockwise in the middle of jet, as the
instabilities weaken. For the electron-positron jet, we find strong mixture of
electron-positron with the ambient plasma, that results in the creation of a
bow shock. Merger of magnetic field current filaments generate density bumps
which initiate a forward shock. The strong mixing between jet and ambient
particles prevents full development of the jet on the studied scale. Our
results therefore provide a direct evidence for both jet collimation and
particle acceleration in the created bow shock. Differences in the magnetic
field structures generated by electron-proton and electron-positron jets may
contribute to observable differences in the polarized properties of emission by
electrons.Comment: 25 pages, 12 figures, ApJ, accepte
Particle Acceleration in Relativistic Electron-positron Jets with Helical Magnetic Fields
The properties of relativistic jets, their interaction with the ambient
environment and particle acceleration due to kinetic instabilities are studied
self-consistently with Particle-in-Cell (PIC) simulations. In this work we
study how a relativistic electron-positron jet containing a helical magnetic
field evolves by focusing on its interaction with the external ambient plasma.
Particularly, 3D PIC simulations are performed using a longer simulation system
than previous studies with an embedded helical magnetic field. An important key
issue in this work is how such a magnetic field affects an electron-positron
jet and how this excites kinetic instabilities such as the Weibel instability
(WI), the kinetic Kelvin-Helmholtz instability (kKHI) and others by further
focusing on how particles accelerate. We do find that kinetic instabilities
along with generated magnetic turbulence are present and consequently
accelerate particles. At the linear stage we observe recollimation-like
features at the center of the simulated jet and later-on as the
electron-positron jet evolves, the magnetic fields generated by the
instabilities become untangled and reorganized into a new topology near the
non-linear phase. We additionally report indications of reconnection near the
end of the non-linear stage, before the magnetic-field becomes untangled, as
electrons get accelerated by multiple magnetic islands in the jet. In the
present study the untangled magnetic field becomes turbulent without any
reformation as it happened in our previous study of an electron-proton jet,
which we will use to additionally compare the present results, obtaining
important insights about the nature of these phenomena applicable to
high-energy astrophysical environments such as Active Galactic Nuclei jets and
Gamma-ray bursts.Comment: 12 pages, 24 figures, submitted to MNRAS Journa
Teleology and Realism in Leibniz's Philosophy of Science
This paper argues for an interpretation of Leibniz’s claim that physics requires both mechanical and teleological principles as a view regarding the interpretation of physical theories. Granting that Leibniz’s fundamental ontology remains non-physical, or mentalistic, it argues that teleological principles nevertheless ground a realist commitment about mechanical descriptions of phenomena. The empirical results of the new sciences, according to Leibniz, have genuine truth conditions: there is a fact of the matter about the regularities observed in experience. Taking this stance, however, requires bringing non-empirical reasons to bear upon mechanical causal claims. This paper first evaluates extant interpretations of Leibniz’s thesis that there are two realms in physics as describing parallel, self-sufficient sets of laws. It then examines Leibniz’s use of teleological principles to interpret scientific results in the context of his interventions in debates in seventeenth-century kinematic theory, and in the teaching of Copernicanism. Leibniz’s use of the principle of continuity and the principle of simplicity, for instance, reveal an underlying commitment to the truth-aptness, or approximate truth-aptness, of the new natural sciences. The paper concludes with a brief remark on the relation between metaphysics, theology, and physics in Leibniz
IceCube expectations for two high-energy neutrino production models at active galactic nuclei
We have determined the currently allowed regions of the parameter spaces of
two representative models of diffuse neutrino flux from active galactic nuclei
(AGN): one by Koers & Tinyakov (KT) and another by Becker & Biermann (BB). Our
observable has been the number of upgoing muon-neutrinos expected in the
86-string IceCube detector, after 5 years of exposure, in the range 10^5 <
E/GeV < 10^8. We have used the latest estimated discovery potential of the
IceCube-86 array at the 5-sigma level to determine the lower boundary of the
regions, while for the upper boundary we have used either the AMANDA upper
bound on the neutrino flux or the more recent preliminary upper bound given by
the half-completed IceCube-40 array (IC40). We have varied the spectral index
of the proposed power-law fluxes, alpha, and two parameters of the BB model:
the ratio between the boost factors of neutrinos and cosmic rays,
Gamma_nu/Gamma_{CR}, and the maximum redshift of the sources that contribute to
the cosmic-ray flux, zCRmax. For the KT model, we have considered two
scenarios: one in which the number density of AGN does not evolve with redshift
and another in which it evolves strongly, following the star formation rate.
Using the IC40 upper bound, we have found that the models are visible in
IceCube-86 only inside very thin strips of parameter space and that both of
them are discarded at the preferred value of alpha = 2.7 obtained from fits to
cosmic-ray data. Lower values of alpha, notably the values 2.0 and 2.3 proposed
in the literature, fare better. In addition, we have analysed the capacity of
IceCube-86 to discriminate between the models within the small regions of
parameter space where both of them give testable predictions. Within these
regions, discrimination at the 5-sigma level or more is guaranteed.Comment: 24 pages, 6 figures, v2: new IceCube-40 astrophysical neutrino upper
bound and IceCube-86 discovery potential used, explanation of AGN flux models
improved, only upgoing neutrinos used, conclusions strengthened. Accepted for
publication in JCA
- …