999 research outputs found

    Predominant utilization of V beta 8+ T cell receptor genes in the H-2Ld- restricted cytotoxic T cell response against the immediate-early protein pp89 of the murine cytomegalovirus

    Get PDF
    Cytotoxic T cell responses to the murine Cytomegalovirus (MCMV) were elicited in BALB/c mice (H-2d) by infectious virus. Eight days after infection, MCMV-primed local lymph node T cells were either depleted for T cells expressing a V beta 8+ TCR or separated into V beta 8+ and V beta 8- subpopulations by a cell sorter using the mAb F23.1. T cells were then expanded in vitro under limiting dilution conditions in the presence of IL-2 and in the absence of viral Ag to avoid selection by Ag in vitro. Frequencies of CTL precursors specific for the Immediate- Early-Ag 1 of MCMV and restricted to H-2Ld were determined. L cells of the endogenous haplotype H-2k cotransfected with the genes for MCMV-IE 1 and H-2Ld were used as target cells. Detection of a CTL response required previous priming of the animals by infection in vivo (less than 1/10(6) for nonimmunized animals). In primed animals CTL precursors of this specificity and restriction were three to fivefold more frequent in the V beta 8+ population (1/9.900 to 1/22.300) than in the V beta 8- population (1/57.000 to 1/87.200). Control experiments showed that frequencies were not influenced by the treatment with the anti-V beta 8-antibody and the fluorescein-labeled anti-Ig itself. V beta 8+ and V beta 8- T cells did not reveal any frequency differences when several other responses were determined (TNP-specific self- restricted CTL precursor; Th cells specific for keyhole limpet hemocyanin or Listeria monocytogenes)

    Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection

    Get PDF
    © 2015 Rosser et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Functional Roles of the IgM Fc Receptor in the Immune System

    Get PDF
    It is now evident from studies of mice unable to secrete IgM that both non-immune “natural” and antigen-induced “immune” IgM are important for protection against pathogens and for regulation of immune responses to self-antigens. Since identification of its Fc receptor (FcμR) by a functional cloning strategy in 2009, the roles of FcμR in these IgM effector functions have begun to be explored. Unlike Fc receptors for switched Ig isotypes (e.g., FcγRs, FcεRs, FcαR, Fcα/μR, pIgR, FcRn), FcμR is selectively expressed by lymphocytes: B, T, and NK cells in humans and only B cells in mice. FcμR may have dual signaling ability: one through a potential as yet unidentified adaptor protein non-covalently associating with the FcμR ligand-binding chain via a His in transmembrane segment and the other through its own Tyr and Ser residues in the cytoplasmic tail. FcμR binds pentameric and hexameric IgM with a high avidity of ~10 nM in solution, but more efficiently binds IgM when it is attached to a membrane component via its Fab region on the same cell surface (cis engagement). Four different laboratories have generated Fcmr-ablated mice and eight different groups of investigators have examined the resultant phenotypes. There have been some clear discrepancies reported that appear to be due to factors including differences in the exons of Fcmr that were targeted to generate the knockouts. One common feature among these different mutant mice, however, is their propensity to produce autoantibodies of both IgM and IgG isotypes. In this review, we briefly describe recent findings concerning the functions of FcμR in both mice and humans and propose a model for how FcμR plays a regulatory role in B cell tolerance
    • …
    corecore