272 research outputs found

    Lipopolysaccharide-induced leptin release is neurally controlled

    Get PDF
    Our hypothesis is that leptin release is controlled neurohormonally. Conscious, male rats bearing indwelling, external, jugular catheters were injected with the test drug or 0.9% NaCl (saline), and blood samples were drawn thereafter to measure plasma leptin. Anesthesia decreased plasma leptin concentrations within 10 min to a minimum at 120 min, followed by a rebound at 360 min. Administration (i.v.) of lipopolysaccharide (LPS) increased plasma leptin to almost twice baseline by 120 min, and it remained on a plateau for 360 min, accompanied by increased adipocyte leptin mRNA. Anesthesia largely blunted the LPS-induced leptin release at 120 min. Isoproterenol (β-adrenergic agonist) failed to alter plasma leptin but reduced LPS-induced leptin release significantly. Propranolol (β-receptor antagonist) produced a significant increase in plasma leptin but had no effect on the response to LPS. Phentolamine (α-adrenergic receptor blocker) not only increased plasma leptin (P < 0.001), but also augmented the LPS-induced increase (P < 0.001). α-Bromoergocryptine (dopaminergic-2 receptor agonist) decreased plasma leptin (P < 0.01) and blunted the LPS-induced rise in plasma leptin release (P < 0.001). We conclude that leptin is at least in part controlled neurally because anesthesia decreased plasma leptin and blocked its response to LPS. The findings that phentolamine and propranolol increased plasma leptin concentrations suggest that leptin release is inhibited by the sympathetic nervous system mediated principally by α-adrenergic receptors because phentolamine, but not propranolol, augmented the response to LPS. Because α-bromoergocryptine decreased basal and LPS-induced leptin release, dopaminergic neurons may inhibit basal and LPS-induced leptin release by suppression of release of prolactin from the adenohypophysis

    Positive affect dysregulation and its relation to binge eating size and frequency

    Get PDF
    Negative affect is an established predictor of binge eating, yet less is known about positive affect. Low positive affect has been theorized to increase binge eating, but a better understanding is needed on the relationship between positive affect and binge eating frequency and size. Participants were 182 treatment-seeking adults (76% self-identified as female; 45% self-identified their race as Black and 40% as White; and 25% self-identified their ethnicity as Hispanic/Latino) with self-reported recurrent binge eating (≥12 binge episodes in the past 3  months). Participants completed the positive and negative affect schedule (PANAS) survey and the eating disorder examination to assess frequency of objective binge episodes (OBEs) and subjective binge episodes (SBEs) over the past 3  months. OBEs and SBEs also were combined to yield total binge episodes over the past 3  months. Independent t-tests and linear regression analyses were used to test associations between positive affect scores and binge episode size and frequencies, and to compare low versus higher positive affect on binge frequency. Additional exploratory models were conducted controlling for negative affect, identity characteristics, and socio-demographic variables. Lower positive affect was significantly associated with more frequent total binge episodes, but not OBEs and SBEs when assessed independently. Findings remained consistent when controlling for covariates and when comparing individuals with the lowest versus higher positive affect levels. Overall, results lend support to the theory that low positive affect is associated with binge eating. Increasing positive affect may be an important treatment consideration for those with recurrent binge eating

    The Role of Citrullinated Proteins Suggests a Novel Mechanism in the Pathogenesis of Multiple Sclerosis

    Get PDF
    The pathogenesis of MS is unknown. In our studies, we have demonstrated an important role for citrullinated myelin basic protein (MBP). The accompanying loss of positive charge compromises the ability of MBP to interact with the lipid bilayer. The conversion of arginine to citrulline in brain is carried out by an enzyme peptidyl arginine deiminase (PAD) 2. The amount of PAD 2 in brain was increased in MS normal-appearing white matter. The mechanism responsible for this increase involved hypomethylation of the promoter region in the PAD 2 gene in MS, but no change (compared to normal) was found in thymus tissue DNA from the same MS patients. In addition, no change was observed in other neurological diseases, including Alzheimer’s, Parkinson’s, and Huntington’s. We propose that citrullinated MBP, resulting from elevated levels of PAD 2 represents an important biochemical pathway in the pathogenesis of MS

    Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles

    Get PDF
    Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions

    Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease, considered to be autoimmune in origin. Post-translational modification of central nervous system proteins, including glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP), through citrullination of arginine residues, may lead to exposure of neoepitopes, triggering autoimmunity. Here we investigated the expression of citrullinated proteins in active MS lesions, MS normal appearing white matter and control brain white matter. We demonstrate increased citrullinated GFAP and MBP by immunohistochemistry and western blotting in areas of ongoing demyelination, suggesting a pivotal role for deimination of GFAP and MBP in MS pathogenesis MS

    Relationship Between Sonic Hedgehog Protein, Brain-Derived Neurotrophic Factor and Oxidative Stress in Autism Spectrum Disorders

    Get PDF
    The etiology of autism spectrum disorders (ASD) is not well known but oxidative stress has been suggested to play a pathological role. We report here that the serum levels of Sonic hedgehog (SHH) protein and brain-derived neurotrophic factor (BDNF) might be linked to oxidative stress in ASD. By using the whole blood or polymorphonuclear leukocytes, we demonstrated that autistic children produced a significantly higher level of oxygen free radicals (OFR). In addition, we found significantly higher levels of serum SHH protein in children with mild as well as severe form of autism. We also found that the serum level of BDNF was significantly reduced in autistic children with mild form of the disorder but not with severe form of the disorder. Our findings are the first to report a correlation between SHH, BDNF and OFR in autistic children, suggesting a pathological role of oxidative stress and SHH in autism spectrum disorders

    Lack of correlation between Ki-67 labelling index and tumor size of anterior pituitary adenomas

    Get PDF
    AIMS AND BACKGROUND: The Ki-67 is a nuclear antigen detected by the monoclonal antibody MIB-1 and its Labeling Index (LI) is considered a marker of normal and abnormal cell proliferation. Pituitary adenomas are generally well differentiated neoplasms, even if in about one third of cases they are invasive of surrounding tissues. The aim of this study is to evaluate the correlation between Ki-67 labelling index and tumor size of pituitary adenomas extimated by means CT and MRI and confirmed at operation. METHODS: Using the monoclonal antibody MIB-1, we evaluated the expression of Ki-67 in 121 anterior pituitary adenomas consecutively operated on in a 48-month period. RESULTS: In relation to neuroradiological (CT and MRI) and surgically verified tumor size, we identified 24 microadenomas, 27 intrasellar macroadenomas, 34 intra-suprasellar macroadenomas, and 36 intra-supra-parasellar macroadenomas. The adenomas were non-infiltrating (76 cases) and infiltrating (45 cases) adenomas. The wall of the cavernous sinus (CS) was infiltrated in 18 cases. Forty-eight adenomas were non-functioning and 73 functioning. The overall mean ± SD Ki-67 LI was 2.72 ± 2.49% (median 1.6). It was 2.59 ± 1.81 in microadenomas, 2.63 ± 3.45 in intrasellar macroadenomas, 1.91 ± 2.11 in intra-suprasellar macroadenomas, and 3.29 ± 5.45 in intra-supra-parasellar macroadenomas (p = 0.27). It was 3.73 ± 5.13% in infiltrating and 2.03 ± 2.41% in non-infiltrating adenomas (p = 0.02), and 5.61 ± 7.19% in CS-infiltrating versus 2.09 ± 2.37% in CS-non-infiltrating adenomas (p = 0.0005). CONCLUSIONS: Our preliminary results seem to exclude significative correlations between Ki-67 LI and tumor size of anterior pituitary adenomas, even if this index can be considered a useful marker in the determination of the infiltrative behaviour of these tumors
    corecore