518 research outputs found

    Fast-ion-induced secondary ion emission from submicron droplet surfaces studied using a new coincidence technique with forward-scattered projectiles

    Get PDF
    A mass spectrometric study of secondary ions emitted from droplet surfaces by MeV-energy heavy ion impact was performed to investigate fast-ion-induced molecular reaction processes on liquid surfaces. Herein, a new coincidence technique was developed between secondary ions and scattered projectile ions at a small forward angle. The advantages of this technique were demonstrated by measurement of the collision between 4-MeV C3+ and ethanol droplets. Secondary ion emission probabilities were obtained directly from the coincidence data. Notably, this technique enabled positive fragment ions that had not been identified in previous measurements to be observed by suppressing the strong background originating from gas-phase molecules more than 104-fold. H+, H3O+, C2H5+, and C2H5O+ were found to be produced as major positive fragment ions, in addition to minor fragments H2+, C2H3+, and CH2OH+. Production of these ions suggests that competition between rapid hydrogen ion emission from multiply ionized states and intermolecular proton transfer accompanied by fragmentation through protonated ethanol occurs after fast heavy-ion collisions. Clarification of the positive fragment ions also revealed the characteristic features of negative ions. Negative ions were realized to exhibit higher degrees of fragmentation and reactivity compared with positive ions. Furthermore, the energy loss by forward-scattered ions during droplet penetration was used to evaluate the target thickness at a submicron level. Variations in secondary ion yield, mass distribution, and kinetic energies depending on the penetration length were observed below 1 µm. These results highlight the unknown mechanism of these “submicron effects” observed in secondary ion emission processes as a new phenomenon

    Positive and negative ion emission from microdroplets by MeV energy ions

    Get PDF
    XXIX International Conference on Photonic, Electronic, and Atomic Collisions (ICPEAC2015): 22–28 July 2015, Toledo, SpainWe have developed a new experimental setup that allowed us to study collision interactions between fast ion beams and liquid droplets under a vacuum condition. Droplets of water and ethanol are irradiated with 0.4-1.5 MeV H+ and 2.0 MeV C2+ ions. The droplet diameter is estimated from energy loss measurements of projectile ions penetrating through droplets. Time-of-flight mass spectra of positive and negative secondary ions exhibit a series of cluster ions generated via protonation and deprotonation

    A Cheap Metal for a "Noble" Task: Preparative and Mechanistic Aspects of Cycloisomerization and Cycloaddition Reactions Catalyzed by Low-Valent Iron Complexes

    No full text
    Reaction of ferrocene with lithium in the presence of either ethylene or COD allows the Fe(0)-ate complexes 1 and 4 to be prepared on a large scale, which turned out to be excellent catalysts for a variety of Alder-ene, [4+2], [5+2], and [2+2+2] cycloadditon and cycloisomerization reactions of polyunsaturated substrates. The structures of ferrates 1 and 4 in the solid-state reveal the capacity of the reduced iron center to share electron density with the ligand sphere. This feature, coupled with the kinetic lability of the bound olefins, is thought to be responsible for the ease with which different enyne or diyne substrates undergo oxidative cyclization as the triggering event of the observed skeletal reorganizations. This mechanistic proposal is corroborated by highly indicative deuterium labeling experiments. Moreover, it was possible to intercept two different products of an oxidative cyclization manifold with the aid of the Fe(+1) complex 6, which, despite its 17-electron count, also turned out to be catalytically competent in certain cases. The unusual cyclobutadiene complex 38 derived from 6 and tolane was characterized by X-ray crystallography

    Notch-Fatigue Properties of Advanced TRIP-Aided Bainitic Ferrite Steels

    Get PDF
    To develop a transformation-induced plasticity (TRIP)-aided bainitic ferrite steel (TBF steel) with high hardenability for a common rail of the next generation diesel engine, 0.2 pct C-1.5 pct Si-1.5 pct Mn-0.05 pct Nb TBF steels with different contents of Cr, Mo, and Ni were produced. The notch-fatigue strength of the TBF steels was investigated and was related to the microstructural and retained austenite characteristics. If Cr, Mo, and/or Ni were added to the base steel, then the steels achieved extremely higher notch-fatigue limits and lower notch sensitivity than base TBF steel and the conventional structural steels. This was mainly associated with (1) carbide-free and fine bainitic ferrite lath structure matrix without proeutectoid ferrite, (2) a large amount of fine metastable retained austenite, and (3) blocky martensite phase including retained austenite, which may suppress a fatigue crack initiation and propagation.ArticleMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE. 43A(11):4129-4136 (2012)journal articl

    Cooling dynamics of carbon cluster anions

    Get PDF
    A series of ion storage experiments on small carbon cluster anions was conducted to understand size-dependent cooling processes. The laser-induced delayed electron detachment time profile show clear even/odd alternation due to the presence of the electronic cooling. The time evolution of the internal energy distribution was simulated for Cn- (n=4 to 7) with a common procedure taking vibrational and electronic cooling into account

    Histological and ultrastructural evaluation of the early healing of the lateral collateral ligament epiligament tissue in a rat knee model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, we evaluated the changes which occurred in the epiligament, an enveloping tissue of the ligament, during the ligament healing. We assessed the association of epiligament elements that could be involved in ligament healing.</p> <p>Methods</p> <p>Thirty-two 8-month old male Wistar rats were used in this study. In twenty-four of them the lateral collateral ligament of the knee joint was surgically transected and was allowed to heal spontaneously. The evaluation of the epiligament healing included light microscopy and transmission electron microscopy.</p> <p>Results</p> <p>At the eight, sixteenth and thirtieth day after injury, the animals were sacrificed and the ligaments were examined. Our results revealed that on the eight and sixteenth day post-injury the epiligament tissue is not completely regenerated. Till the thirtieth day after injury the epiligament is similar to normal, but not fully restored.</p> <p>Conclusion</p> <p>Our study offered a more complete description of the epiligament healing process and defined its important role in ligament healing. Thus, we provided a base for new strategies in ligament treatment.</p

    The impact of solar radiation on polar mesospheric ice particle formation

    Get PDF
    Mean temperatures in the polar summer mesopause can drop to 130&thinsp;K. The low temperatures in combination with water vapor mixing ratios of a few parts per million give rise to the formation of ice particles. These ice particles may be observed as polar mesospheric clouds. Mesospheric ice cloud formation is believed to initiate heterogeneously on small aerosol particles (r &lt; 2 nm) composed of recondensed meteoric material, so-called meteoric smoke particles (MSPs). Recently, we investigated the ice activation and growth behavior of MSP analogues under realistic mesopause conditions. Based on these measurements we presented a new activation model which largely reduced the uncertainties in describing ice particle formation. However, this activation model neglected the possibility that MSPs heat up in the low-density mesopause due to absorption of solar and terrestrial irradiation. Radiative heating of the particles may severely reduce their ice formation ability. In this study we expose MSP analogues (Fe2O3 and FexSi1 − xO3) to realistic mesopause temperatures and water vapor concentrations and investigate particle warming under the influence of variable intensities of visible light (405, 488, and 660&thinsp;nm). We show that Mie theory calculations using refractive indices of bulk material from the literature combined with an equilibrium temperature model presented in this work predict the particle warming very well. Additionally, we confirm that the absorption efficiency increases with the iron content of the MSP material. We apply our findings to mesopause conditions and conclude that the impact of solar and terrestrial radiation on ice particle formation is significantly lower than previously assumed.</p

    MnSOD downergulation induced by extremely low 0.1 mGy single and fractionated X-rays and microgravity treatment in human neuroblastoma cell line, NB-1

    Get PDF
    Copyright © 2015 JCBN. A human neuroblastoma cell line, was treated with 24 h of microgravity simulation by clinostat, or irradiated with extremely small X-ray doses of 0.1 or 1.0 mGy using single and 10 times fractionation regimes with 1 and 2 h time-intervals. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) examination was performed for apoptosis related factors (BAX, CYTC, APAF1, VDAC1-3, CASP3, CASP8, CASP9 P53, AIF, ANT1 and 2, BCL2, MnSOD, autophagy related BECN and necrosis related CYP-40. The qRT-PCR results revealed that microgravity did not result in significant changes except for a upregulation of proapoptotic VDAC2, and downregulations of proapoptotic CASP9 and antiapoptotic MnSOD. After 0.1 mGy fractionation irradiation, there was increased expression of proapoptotic APAF1 and downregulation of proapoptotic CYTC, VDAC2, VDAC3, CASP8, AIF, ANT1, and ANT2, as well as an increase in expression of antiapoptotic BCL2. There was also a decrease in MnSOD expression with 0.1 mGy fractionation irradiation. These results suggest that microgravity and low-dose radiation may decrease apoptosis but may potentially increase oxidative stress
    corecore