85 research outputs found

    Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene

    Get PDF
    Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions, when embryonic cells exit the pluripotent state

    Bullying behaviour in schools, socioeconomic position and psychiatric morbidity: a cross-sectional study in late adolescents in Greece

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bullying is quite prevalent in the school setting and has been associated with the socioeconomic position and psychiatric morbidity of the pupils. The aim of the study was to investigate the association between bullying and socioeconomic status in a sample of Greek adolescents and to examine whether this is confounded by the presence of psychiatric morbidity, including sub-threshold forms of illness.</p> <p>Methods</p> <p>5,614 adolescents aged 16-18 years old and attending 25 senior high schools were screened and a stratified random sample of 2,427 were selected for a detailed interview. Psychiatric morbidity was assessed with a fully structured psychiatric interview, the revised Clinical Interview Schedule (CIS-R), while bullying was assessed with the revised Olweus bully/victim questionnaire. The following socio-economic variables were assessed: parental educational level and employment status, financial difficulties of the family and adolescents' school performance. The associations were investigated using multinomial logit models.</p> <p>Results</p> <p>26.4% of the pupils were involved in bullying-related behaviours at least once monthly either as victims, perpetrators or both, while more frequent involvement (at least once weekly) was reported by 4.1%. Psychiatric morbidity was associated with all types of bullying-related behaviours. No socioeconomic associations were reported for victimization. A lower school performance and unemployment of the father were significantly more likely among perpetrators, while economic inactivity of the mother was more likely in pupils who were both victims and perpetrators. These results were largely confirmed when we focused on high frequency behaviours only. In addition, being overweight increased the risk of frequent victimization.</p> <p>Conclusions</p> <p>The prevalence of bullying among Greek pupils is substantial. Perpetration was associated with some dimensions of adolescents' socioeconomic status, while victimization showed no socioeconomic associations. Our findings may add to the understanding of possible risk factors for bullying behaviours in adolescence.</p

    Expression of the normal epithelial cell-specific 1 (NES1; KLK10) candidate tumour suppressor gene in normal and malignant testicular tissue

    Get PDF
    The normal epithelial cell-specific 1 (NES1) gene (official name kallikrein gene 10; KLK10) is a new member of the expanding human kallikrein gene family and encodes for a secreted serine protease. Experimental evidence suggests that NES1 controls normal cell growth and may function as a tumour suppressor. NES1 is down-regulated during breast cancer progression. The NES1 gene is highly expressed in testicular as well as in other tissues. In this study, we investigated the expression level of the NES1 gene in cancerous and normal testicular tissues with reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry. In all 14 primary testicular germ-cell tumours examined, the NES1 gene expression was markedly reduced compared to adjacent (paired) normal tissues. We further examined 6 randomly selected primary germ-cell tumours and 8 normal tissues (obtained from different individuals). We confirmed the differential expression of the NES1 gene in germ-cell tumours (GCT) and pre-malignant carcinoma in situ (CIS). Our findings suggest that NES1 may act as a tumour suppressor and may play a role in the pathogenesis and progression of this malignancy. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Human kallikrein gene 13 (KLK13) expression by quantitative RT–PCR: an independent indicator of favourable prognosis in breast cancer

    Get PDF
    Kallikreins are a group of serine proteases with diverse physiological functions. KLK13 (previously known as KLK-L4) is a novel kallikrein gene located on chromosome 19q13.4 and shares a high degree of homology with other kallikrein family members. Many kallikrein genes were found to be differentially expressed in various malignancies, and their regulation is controlled by steroid hormones in prostate and breast cancer cell lines. We studied the expression of KLK13 by quantitative reverse transcriptase–polymerase chain reaction in 173 patients with epithelial breast carcinoma. An optimal cutoff point equal to the 40th percentile was defined, based on the ability of KLK13 to predict disease-free survival. KLK13 values were then associated with other established prognostic factors and with disease-free survival and overall survival. Higher positivity for KLK13 expression was found in older, oestrogen receptor positive patients. In univariate analysis, KLK13 expression is a significant predictor of improved disease-free survival and overall survival (P<0.001 and P=0.009, respectively). Cox multivariate analysis indicated that KLK13 was an independent prognostic variable in the subgroups of patients with Grade I–II tumours and in patients who were oestrogen receptor and progesterone receptor positive, and node positive. Hazard ratios derived from Cox analysis, related to disease-free survival and overall survival were 0.22 (P=0.001) and 0.24 (P=0.008), respectively, for the Grade I–II group; 0.36 (P=0.008) and 0.44 (P=0.038), respectively, for the node positive group and 0.36 (P=0.008) and 0.18 (P=0.008), respectively, for the oestrogen receptor positive group. The adjusted hazard ratio for progesterone receptor positive patients for disease-free survival was 0.25 (P=0.012). For patients in the node positive and oestrogen receptor positive subgroup (n=51) the adjusted hazard ratio was 0.25 (P=0.006) and for the node positive and progesterone receptor positive subgroup (n=46) the hazard ratio was 0.24 (P=0.008). Taken together, these data suggest that higher KLK13 expression in these subgroups of breast cancer patients is associated with an approximately 55 to 80% reduction in the risk of relapse or death. We conclude that KLK13 expression, as assessed by quantitative reverse transcriptase–polymerase chain reaction, is an independent favourable prognostic marker for breast carcinoma

    Using location services to autonomously drive flying mobile sinks in Wireless Sensor Networks

    Get PDF
    International audienceThe use of mobility in a Wireless Sensor Network has already been indicated as a feature whose exploitation would increase the performances and the ease of mantainance in these environments. Expecially in a event-based WSN, where is necessary a prompt response in terms of data processing and o oading, a set of mobile ying sinks could be a good option for the role of autonomous data collectors. For those reasons in this paper we propose a distributed algorithm to independently and autonomously drive a mobile sink through the nodes of a WSN and we show its preferability over more classical routing approaches expecially in the presence of a localized generation of large amount of information. Our result shows that, in the case of fairly complete coverage of the area where the nodes lie, it is possible to promptly notify a mobile sink about the presence of data to o oad, drive it to the interested area and achieve interesting performances

    The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells

    Get PDF
    INTRODUCTION: Medroxyprogesterone acetate (MPA), the major progestin used for oral contraception and hormone replacement therapy, has been implicated in increased breast cancer risk. Is this risk due to its progestational or androgenic properties? To address this, we assessed the transcriptional effects of MPA as compared with those of progesterone and dihydrotestosterone (DHT) in human breast cancer cells. METHOD: A new progesterone receptor-negative, androgen receptor-positive human breast cancer cell line, designated Y-AR, was engineered and characterized. Transcription assays using a synthetic promoter/reporter construct, as well as endogenous gene expression profiling comparing progesterone, MPA and DHT, were performed in cells either lacking or containing progesterone receptor and/or androgen receptor. RESULTS: In progesterone receptor-positive cells, MPA was found to be an effective progestin through both progesterone receptor isoforms in transient transcription assays. Interestingly, DHT signaled through progesterone receptor type B. Expression profiling of endogenous progesterone receptor-regulated genes comparing progesterone and MPA suggested that although MPA may be a somewhat more potent progestin than progesterone, it is qualitatively similar to progesterone. To address effects of MPA through androgen receptor, expression profiling was performed comparing progesterone, MPA and DHT using Y-AR cells. These studies showed extensive gene regulatory overlap between DHT and MPA through androgen receptor and none with progesterone. Interestingly, there was no difference between pharmacological MPA and physiological MPA, suggesting that high-dose therapeutic MPA may be superfluous. CONCLUSION: Our comparison of the gene regulatory profiles of MPA and progesterone suggests that, for physiologic hormone replacement therapy, the actions of MPA do not mimic those of endogenous progesterone alone. Clinically, the complex pharmacology of MPA not only influences its side-effect profile; but it is also possible that the increased breast cancer risk and/or the therapeutic efficacy of MPA in cancer treatment is in part mediated by androgen receptor

    Chromatin States Accurately Classify Cell Differentiation Stages

    Get PDF
    Gene expression is controlled by the concerted interactions between transcription factors and chromatin regulators. While recent studies have identified global chromatin state changes across cell-types, it remains unclear to what extent these changes are co-regulated during cell-differentiation. Here we present a comprehensive computational analysis by assembling a large dataset containing genome-wide occupancy information of 5 histone modifications in 27 human cell lines (including 24 normal and 3 cancer cell lines) obtained from the public domain, followed by independent analysis at three different representations. We classified the differentiation stage of a cell-type based on its genome-wide pattern of chromatin states, and found that our method was able to identify normal cell lines with nearly 100% accuracy. We then applied our model to classify the cancer cell lines and found that each can be unequivocally classified as differentiated cells. The differences can be in part explained by the differential activities of three regulatory modules associated with embryonic stem cells. We also found that the “hotspot” genes, whose chromatin states change dynamically in accordance to the differentiation stage, are not randomly distributed across the genome but tend to be embedded in multi-gene chromatin domains, and that specialized gene clusters tend to be embedded in stably occupied domains

    Transcriptional upregulation of human tissue kallikrein 6 in ovarian cancer: clinical and mechanistic aspects

    Get PDF
    The human tissue kallikrein family (KLK for protein; KLK for gene) includes 15 members. Twelve kallikreins, including KLK6, are concurrently upregulated in ovarian cancer. However, the mechanism of this phenomenon remains unclear. In this study, we measured KLK6 expression in a large series of ovarian tissue cytosols and examined possible mechanisms of KLK6 up-regulation in ovarian cancer. Using a newly developed enzyme-linked immunosorbent assay (ELISA) with two monoclonal antibodies, we quantified KLK6 expression in ovarian tissue cytosols, and confirmed the upregulation of KLK6 in ovarian cancer and its unfavourable prognostic value. We then examined KLK6 mRNA expression using reverse transcription–polymerase chain reaction and established its good concordance with KLK6 protein expression. This finding suggested that the KLK6 gene is under transcriptional regulation. We then scrutinised a few mechanisms that could explain KLK6 upregulation. The relative abundance of two KLK6 mRNA transcripts was studied; we found the same differential expression pattern in all samples, regardless of KLK6 levels. Genomic mutation screening of all exons and the 5′-flanking region of the KLK6 gene identified two linked single-nucleotide polymorphisms in the 5′-untranslated region, but neither correlated with KLK6 expression. Ovarian cell lines were separately treated with five steroid hormones. None of the treatments produced significant effects on KLK6 expression. We conclude that KLK6 is transcriptionally upregulated in ovarian cancer, but probably not through alternative mRNA transcript expression, genomic mutation, or steroid hormone induction

    Alcohol and cannabis use among adolescents in Flemish secondary school in Brussels: effects of type of education

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research regarding socio-economic differences in alcohol and drug use in adolescence yields mixed results. This study hypothesizes that (1) when using education type as a proxy of one's social status, clear differences will exist between students from different types of education, regardless of students' familial socio-economic background; (2) and that the effects of education type differ according to their cultural background.</p> <p>Methods</p> <p>Data from the Brussels youth monitor were used, a school survey administered among 1,488 adolescents from the 3rd to 6th year of Flemish secondary education. Data were analyzed using multilevel logistic regression models.</p> <p>Results</p> <p>Controlling for their familial background, the results show that native students in lower educational tracks use alcohol and cannabis more often than students in upper educational tracks. Such a relationship was not found for students from another ethnic background.</p> <p>Conclusion</p> <p>Results from this study indicate that research into health risks should take into account both adolescents' familial background and individual social position as different components of youngsters' socio-economic background.</p

    Dissecting the Relation between a Nuclear Receptor and GATA: Binding Affinity Studies of Thyroid Hormone Receptor and GATA2 on TSHβ Promoter

    Get PDF
    Background: Much is known about how genes regulated by nuclear receptors (NRs) are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up-or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf) has an important role in down-regulation of the thyrotropin gene (TSH beta) by liganded thyroid hormone receptor (TR). Methodology/Principal Findings: In an effort to better understand the mechanism that drives TSH beta down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSH beta promoter. Surprisingly, we observed that ligand (T3) weakens TR binding to a negative regulatory element (NRE) present in the TSH beta promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs). Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. Conclusions: Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.Medical Research Council (MRC), UKConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazi
    corecore