1,281 research outputs found
Linking behavior in the physics education research coauthorship network
Citation: Anderson, K. A., Crespi, M., & Sayre, E. C. (2017). Linking behavior in the physics education research coauthorship network. Physical Review Physics Education Research, 13(1), 10. doi:10.1103/PhysRevPhysEducRes.13.010121There is considerable long-term interest in understanding the dynamics of collaboration networks, and how these networks form and evolve over time. Most of the work done on the dynamics of social networks focuses on well-established communities. Work examining emerging social networks is rarer, simply because data are difficult to obtain in real time. In this paper, we use thirty years of data from an emerging scientific community to look at that crucial early stage in the development of a social network. We show that when the field was very young, islands of individual researchers labored in relative isolation, and the coauthorship network was disconnected. Thirty years later, rather than a cluster of individuals, we find a true collaborative community, bound together by a robust collaboration network. However, this change did not take place gradually-the network remained a loose assortment of isolated individuals until the mid 2000s, when those smaller parts suddenly knit themselves together into a single whole. In the rest of this paper, we consider the role of three factors in these observed structural changes: growth, changes in social norms, and the introduction of institutions such as field-specific conferences and journals. We have data from the very earliest years of the field, a period which includes the introduction of two different institutions: the first field-specific conference, and the first field-specific journals. We also identify two relevant behavioral shifts: a discrete increase in coauthorship coincident with the first conference, and a shift among established authors away from collaborating with outsiders, towards collaborating with each other. The interaction of these factors gives us insight into the formation of collaboration networks more broadly
Holographic analysis of diffraction structure factors
We combine the theory of inside-source/inside-detector x-ray fluorescence
holography and Kossel lines/x ray standing waves in kinematic approximation to
directly obtain the phases of the diffraction structure factors. The influence
of Kossel lines and standing waves on holography is also discussed. We obtain
partial phase determination from experimental data obtaining the sign of the
real part of the structure factor for several reciprocal lattice vectors of a
vanadium crystal.Comment: 4 pages, 3 figures, submitte
Information and The Brukner-Zeilinger Interpretation of Quantum Mechanics: A Critical Investigation
In Brukner and Zeilinger's interpretation of quantum mechanics, information
is introduced as the most fundamental notion and the finiteness of information
is considered as an essential feature of quantum systems. They also define a
new measure of information which is inherently different from the Shannon
information and try to show that the latter is not useful in defining the
information content in a quantum object.
Here, we show that there are serious problems in their approach which make
their efforts unsatisfactory. The finiteness of information does not explain
how objective results appear in experiments and what an instantaneous change in
the so-called information vector (or catalog of knowledge) really means during
the measurement. On the other hand, Brukner and Zeilinger's definition of a new
measure of information may lose its significance, when the spin measurement of
an elementary system is treated realistically. Hence, the sum of the individual
measures of information may not be a conserved value in real experiments.Comment: 20 pages, two figures, last version. Section 4 is replaced by a new
argument. Other sections are improved. An appendix and new references are
adde
Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine
The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation
Consistency of cosmic microwave background temperature measurements in three frequency bands in the 2500-square-degree SPT-SZ survey
We present an internal consistency test of South Pole Telescope (SPT)
measurements of the cosmic microwave background (CMB) temperature anisotropy
using three-band data from the SPT-SZ survey. These measurements are made from
observations of ~2500 deg^2 of sky in three frequency bands centered at 95,
150, and 220 GHz. We combine the information from these three bands into six
semi-independent estimates of the CMB power spectrum (three single-frequency
power spectra and three cross-frequency spectra) over the multipole range 650 <
l < 3000. We subtract an estimate of foreground power from each power spectrum
and evaluate the consistency among the resulting CMB-only spectra. We determine
that the six foreground-cleaned power spectra are consistent with the null
hypothesis, in which the six cleaned spectra contain only CMB power and noise.
A fit of the data to this model results in a chi-squared value of 236.3 for 235
degrees of freedom, and the probability to exceed this chi-squared value is
46%.Comment: 21 pages, 4 figures, current version matches version published in
JCA
A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey
We present a measurement of the cosmic microwave background (CMB) temperature
power spectrum using data from the recently completed South Pole Telescope
Sunyaev-Zel'dovich (SPT-SZ) survey. This measurement is made from observations
of 2540 deg of sky with arcminute resolution at GHz, and improves
upon previous measurements using the SPT by tripling the sky area. We report
CMB temperature anisotropy power over the multipole range . We
fit the SPT bandpowers, combined with the seven-year Wilkinson Microwave
Anisotropy Probe (WMAP7) data, with a six-parameter LCDM cosmological model and
find that the two datasets are consistent and well fit by the model. Adding SPT
measurements significantly improves LCDM parameter constraints; in particular,
the constraint on tightens by a factor of 2.7. The impact of
gravitational lensing is detected at , the most significant
detection to date. This sensitivity of the SPT+WMAP7 data to lensing by
large-scale structure at low redshifts allows us to constrain the mean
curvature of the observable universe with CMB data alone to be
. Using the SPT+WMAP7 data, we measure the
spectral index of scalar fluctuations to be in the LCDM
model, a preference for a scale-dependent spectrum with .
The SPT measurement of the CMB damping tail helps break the degeneracy that
exists between the tensor-to-scalar ratio and in large-scale CMB
measurements, leading to an upper limit of (95%,C.L.) in the LCDM+
model. Adding low-redshift measurements of the Hubble constant () and the
baryon acoustic oscillation (BAO) feature to the SPT+WMAP7 data leads to
further improvements. The combination of SPT+WMAP7++BAO constrains
in the LCDM model, a detection of , ... [abridged]Comment: 21 pages, 10 figures. Replaced with version accepted by ApJ. Data
products are available at http://pole.uchicago.edu/public/data/story12
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
We study the consistency of 150 GHz data from the South Pole Telescope (SPT)
and 143 GHz data from the Planck satellite over the patch of sky covered by the
SPT-SZ survey. We first visually compare the maps and find that the residuals
appear consistent with noise after accounting for differences in angular
resolution and filtering. We then calculate (1) the cross-spectrum between two
independent halves of SPT data, (2) the cross-spectrum between two independent
halves of Planck data, and (3) the cross-spectrum between SPT and Planck data.
We find the three cross-spectra are well-fit (PTE = 0.30) by the null
hypothesis in which both experiments have measured the same sky map up to a
single free calibration parameter---i.e., we find no evidence for systematic
errors in either data set. As a by-product, we improve the precision of the SPT
calibration by nearly an order of magnitude, from 2.6% to 0.3% in power.
Finally, we compare all three cross-spectra to the full-sky Planck power
spectrum and find marginal evidence for differences between the power spectra
from the SPT-SZ footprint and the full sky. We model these differences as a
power law in spherical harmonic multipole number. The best-fit value of this
tilt is consistent among the three cross-spectra in the SPT-SZ footprint,
implying that the source of this tilt is a sample variance fluctuation in the
SPT-SZ region relative to the full sky. The consistency of cosmological
parameters derived from these datasets is discussed in a companion paper.Comment: 15 pages, 9 figures. Published in The Astrophysical Journal. Current
arxiv version matches published versio
A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite
The Planck cosmic microwave background (CMB) temperature data are best fit
with a LCDM model that is in mild tension with constraints from other
cosmological probes. The South Pole Telescope (SPT) 2540 SPT-SZ
survey offers measurements on sub-degree angular scales (multipoles ) with sufficient precision to use as an independent check of
the Planck data. Here we build on the recent joint analysis of the SPT-SZ and
Planck data in \citet{hou17} by comparing LCDM parameter estimates using the
temperature power spectrum from both data sets in the SPT-SZ survey region. We
also restrict the multipole range used in parameter fitting to focus on modes
measured well by both SPT and Planck, thereby greatly reducing sample variance
as a driver of parameter differences and creating a stringent test for
systematic errors. We find no evidence of systematic errors from such tests.
When we expand the maximum multipole of SPT data used, we see low-significance
shifts in the angular scale of the sound horizon and the physical baryon and
cold dark matter densities, with a resulting trend to higher Hubble constant.
When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky
data but keep the multipole range restricted, we find differences in the
parameters and . We perform further checks, investigating
instrumental effects and modeling assumptions, and we find no evidence that the
effects investigated are responsible for any of the parameter shifts. Taken
together, these tests reveal no evidence for systematic errors in SPT or Planck
data in the overlapping sky coverage and multipole range and, at most, weak
evidence for a breakdown of LCDM or systematic errors influencing either the
Planck data outside the SPT-SZ survey area or the SPT data at .Comment: 14 pages, 7 figures. Updated 1 figure and expanded on the reasoning
for fixing the affect of lensing on the power spectrum instead of varying
Alen
Extragalactic millimeter-wave point source catalog, number counts and statistics from 771 square degrees of the SPT-SZ Survey
We present a point source catalog from 771 square degrees of the South Pole
Telescope Sunyaev Zel'dovich (SPT-SZ) survey at 95, 150, and 220 GHz. We detect
1545 sources above 4.5 sigma significance in at least one band. Based on their
relative brightness between survey bands, we classify the sources into two
populations, one dominated by synchrotron emission from active galactic nuclei,
and one dominated by thermal emission from dust-enshrouded star-forming
galaxies. We find 1238 synchrotron and 307 dusty sources. We cross-match all
sources against external catalogs and find 189 unidentified synchrotron sources
and 189 unidentified dusty sources. The dusty sources without counterparts are
good candidates for high-redshift, strongly lensed submillimeter galaxies. We
derive number counts for each population from 1 Jy down to roughly 9, 5, and 11
mJy at 95, 150, and 220 GHz. We compare these counts with galaxy population
models and find that none of the models we consider for either population
provide a good fit to the measured counts in all three bands. The disparities
imply that these measurements will be an important input to the next generation
of millimeter-wave extragalactic source population models.Comment: 23 pages, 8 figures, submitted to Ap
- …