207 research outputs found

    GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.

    Get PDF
    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception

    GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics

    Get PDF
    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10−13, r2 = 8.9%, β = −0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with—but is statistically distinct from—the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10−37, r2 = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perceptio

    Short-term post release mortality of skates (family Rajidae) discarded in a western North Atlantic commercial otter trawl fishery

    Get PDF
    a b s t r a c t Due to market and regulatory factors, Rajidae skates are routinely discarded by commercial otter trawlers in the western North Atlantic. Accounting for post-release mortality is therefore essential to total fishing mortality estimates, stock status and management of this group of fishes. However, despite a presumed species-specific range in tolerance, few studies have investigated the short-term post-release mortality among skates indigenous to the western North Atlantic following capture by mobile fishing gears, and never in the Gulf of Maine. This study addresses this shortfall for the prohibited thorny skate, Amblyraja radiate and smooth skate, Malacoraja senta, and the targeted winter skate, Leucoraja ocellata, and little skate, Leucoraja erinacea. Of 1288 skates evaluated, negligible immediate mortality was observed at the time of capture, even in relation to the largest catches and/or most prolonged tows. However, injury frequency was moderate, with highest levels in the smooth (60%) and thorny (52%) skates. Aside from the smooth skate (59%), 72 h mortality rates were low overall (19% across all species when accounting tow durations indicative of the fishery), with the winter skate (8%) exhibiting the lowest levels. Logistic regression modeling revealed tow duration as the most universal predictor of condition and 72 h mortality, while catch biomass, sex, temperature changes, and animal size also held influence in certain species. Although in general the studied species appear more resilient to trawl capture and handling than previously estimated, interspecific differences must be accounted for when managing this group

    Sensitivity of Genome-Wide-Association Signals to Phenotyping Strategy: The PROP-TAS2R38 Taste Association as a Benchmark

    Get PDF
    Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-values for all SNPs genotyped in the current study

    Genome-wide association study of metabolic traits reveals novel gene-metabolite-disease links.

    Get PDF
    Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on (1)H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10(-8)) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10(-44)) and lysine (rs8101881, P = 1.2×10(-33)), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers

    Is there a cloud in the silver lining for imatinib?

    Get PDF
    Imatinib mesylate (Gleevec® or Glivec®), a small molecule tyrosine kinase inhibitor for the treatment of chronic myeloid leukaemia, has been said to herald the dawn of a new er-a of rationally designed, molecularly targeted oncotherapy. Lurking on the same new horizon, however, is the age-old spectre of drug resistance. This review sets the intoxicating clinical perspective against the more sobering laboratory evidence of such divergent mechanisms of imatinib resistance as gene amplification and stem cell quiescence. Polychemotherapy has already been considered to combat resistance, but a more innovative, as yet unformulated, approach may be advocated

    PI3Kδ and primary immunodeficiencies.

    Get PDF
    Primary immunodeficiencies are inherited disorders of the immune system, often caused by the mutation of genes required for lymphocyte development and activation. Recently, several studies have identified gain-of-function mutations in the phosphoinositide 3-kinase (PI3K) genes PIK3CD (which encodes p110δ) and PIK3R1 (which encodes p85α) that cause a combined immunodeficiency syndrome, referred to as activated PI3Kδ syndrome (APDS; also known as p110δ-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI)). Paradoxically, both loss-of-function and gain-of-function mutations that affect these genes lead to immunosuppression, albeit via different mechanisms. Here, we review the roles of PI3Kδ in adaptive immunity, describe the clinical manifestations and mechanisms of disease in APDS and highlight new insights into PI3Kδ gleaned from these patients, as well as implications of these findings for clinical therapy

    Simulation of milling cells in shell through the cam module Compas‐3D v18

    Get PDF
    У роботі проведено комп’ютерне моделювання фрезерування карманів дослідної оболонки корпусу ракетно‐космічного призначення із алюмінієвого сплаву. При моделюванні застосована програма «Модуль ЧПУ. Фрезерная обработка», що є інтегрована в систему тривимірного моделювання КОМПАС‐3D v18. Показано, що з трьох стратегій фрезерування карманів («зігзаг», «еквідистанта», «по рядках») найбільш продуктивною є стратегія «зігзаг».The computer simulation of the milling of cells of the experimental shell of the rocket space housing of aluminum alloy. For simulation, we use the program "CNC Module. Milling Processing", which is integrated into Compas‐3D v18. It is shown that of the three pocket milling strategies ("zigzag", "equidistant", "line by line") the most productive is the "zigzag" strategy
    corecore