21 research outputs found

    Relationship between apolipoprotein(a) size polymorphism and coronary heart disease in overweight subjects

    Get PDF
    BACKGROUND: Overweight is associated with an increased cardiovascular risk which is only partially explained by conventional risk factors. The objective of this study was to evaluate lipoprotein(a) [Lp(a)] plasma levels and apolipoprotein(a) [apo(a)] phenotypes in relation to coronary heart disease (CHD) in overweight subjects. METHODS: A total of 275 overweight (BMI ≥ 27 kg/m(2)) subjects, of which 155 had experienced a CHD event, 337 normal weight subjects with prior CHD and 103 CHD-free normal weight subjects were enrolled in the study. Lp(a) levels were determined by an ELISA technique and apo(a) isoforms were detected by a high-resolution immunoblotting method. RESULTS: Lp(a) levels were similar in the three study groups. Overweight subjects with CHD had Lp(a) concentrations significantly higher than those without [median (interquartile range): 20 (5–50.3) versus 12.6 (2.6–38.6) mg/dl, P < 0.05]. Furthermore, overweight subjects with CHD showed a higher prevalence of low molecular weight apo(a) isoforms than those without (55.5% versus 40.8%, P < 0.05) and with respect to the control group (55.5% versus 39.8%, P < 0.05). Stepwise regression analysis showed that apo(a) phenotypes, but not Lp(a) levels, entered the model as significant independent predictors of CHD in overweight subjects. CONCLUSIONS: Our data indicate that small-sized apo(a) isoforms are associated with CHD in overweight subjects. The characterization of apo(a) phenotypes might serve as a reliable biomarker to better assess the overall CHD risk of each subject with elevated BMI, leading to more intensive treatment of modifiable cardiovascular risk factors

    Akutdiagnostik während der Nierenkolik, Verzicht auf Urogramm und Isotopennephrogramm

    No full text

    Microcapsules and Transdermal Patch: A Comparative Approach for Improved Delivery of Antidiabetic Drug

    No full text
    Glibenclamide (GL)-loaded microcapsules (MC) and transdermal patches (TDP) were formulated and in vitro and in vivo parameters compared to find out the best route of drug administration. The formulation TDP1 having a drug–polymer ratio 1:1 showed comparatively higher GL release and better permeation across mice skin (p < 0.05). From the comparative study, it was concluded that the transdermal system of GL produced better improvement compared to oral microcapsule administration (p < 0.05). The transdermal system exhibited comparatively slow and continuous supply of GL at a desired rate to systemic circulation avoiding metabolism, which improved day-to-day glycemic control in diabetic subjects. Transdermal system of GL exhibited better control of hyperglycemia and prolonged plasma half-life by transdermal systems (9.6 ± 1.2 h) in comparison with oral microcapsule (5.84 ± 2.1 h), indicating that the drug, when administered by transdermal systems, will remain in the body for a longer period. From the glucose tolerance test, transdermal route effectively maintained the normoglycemic levels in contrast to the oral group (MC1), which produced remarkable hypoglycemia ranging from −12.6 ± 2.1% to −18 ± 2.3%. The significantly high (p < 0.05) area under the curve values observed with transdermal system (1,346.2 ± 92.3 ng ml−1 h−1) also indicate increased bioavailability of the drug from these systems compared to the oral route (829.8 ± 76.4 ng ml−1 h−1)

    Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions

    No full text
    The relationships between oxidation-specific epitopes (OSE) and lipoprotein (a) [Lp(a)] and progressive atherosclerosis and plaque rupture have not been determined. Coronary artery sections from sudden death victims and carotid endarterectomy specimens were immunostained for apoB-100, oxidized phospholipids (OxPL), apo(a), malondialdehyde-lysine (MDA), and MDA-related epitopes detected by antibody IK17 and macrophage markers. The presence of OxPL captured in carotid and saphenous vein graft distal protection devices was determined with LC-MS/MS. In coronary arteries, OSE and apo(a) were absent in normal coronary arteries and minimally present in early lesions. As lesions progressed, apoB and MDA epitopes did not increase, whereas macrophage, apo(a), OxPL, and IK17 epitopes increased proportionally, but they differed according to plaque type and plaque components. Apo(a) epitopes were present throughout early and late lesions, especially in macrophages and the necrotic core. IK17 and OxPL epitopes were strongest in late lesions in macrophage-rich areas, lipid pools, and the necrotic core, and they were most specifically associated with unstable and ruptured plaques. Specific OxPL were present in distal protection devices. Human atherosclerotic lesions manifest a differential expression of OSEs and apo(a) as they progress, rupture, and become clinically symptomatic. These findings provide a rationale for targeting OSE for biotheranostic applications in humans
    corecore