68 research outputs found

    Guidelines for the establishment of microbiological criteria for foods

    Get PDF
    O Grupo de Trabalho Ocorrência Microbiológica na Cadeia Alimentar (GTOMCA) do Programa PortFIR considerou de grande importância o desenvolvimento de um documento que compilasse uma seleção de legislação e de informações relativas a Critérios Microbiológicos (CM), visando apoiar e facilitar, aos operadores e entidades do setor alimentar, a sua aplicação na validação do processo de produção, na segurança e/ou higiene dos géneros alimentícios, na adesão a boas práticas de fabrico dos mesmos, e/ou, ainda, na manutenção da sua qualidade durante o seu tempo de vida útil. Deste modo, o GTOMCA desenvolveu o Guia para o estabelecimento de critérios microbiológicos em géneros alimentícios, que foi publicado em abril de 2017, contemplando a identificação, caraterísticas e propósito dos CM, os fatores a considerar para a sua definição, nomeadamente: a categoria do alimento, o microrganismo e/ou as suas toxinas, os metabolitos e a virulência, os valores limite, o plano de amostragem, o tipo de utilização e consumo assim como o método de análise laboratorial, o ponto da cadeia alimentar onde se aplica, as medidas a tomar no caso de resultados não satisfatórios e a necessidade de revisão e atualização dos CM.The Working Group on Microbiological Occurrence on the Food Chain (GTOMCA) of Por tFIR Program considered unanimously, as an important need, the existence of a document with a selection and compilation of existing legislation and information concerning microbiological criteria (CM) as a tool to suppor t and facilitate its application by operators and entities in the food sector to validate the acceptability of the production process or the food safety or hygiene, the obser vance to good manufacturing practices or the maintenance of the food quality during its lifetime. So, GTOMCA developed a Guide for the establishment of microbiological criteria in foodstuf fs, which was published in April 2017, regarding the identification, characteristics and purpose of microbiological criteria, the factors to consider for its definition, identification, characteristics and purpose of CM and, as impor tant factors to consider the food categor y, the micro-organism and its metabolites, toxins and virulence factors, the limit values, the sampling plan, the type of food consumption as well as the analy tical method for testing the food, the point of the food chain where it is applied, the measures to be taken in the event of unsatisfactor y results and the need to review and update of the CM.info:eu-repo/semantics/publishedVersio

    Validation of revised methane and nitrous oxide profiles from MIPAS-ENVISAT

    Get PDF
    Improved versions of CH4 and N2O profiles derived at the Institute of Meteorology and Climate Research and Instituto de Astrofísica de Andalucía (CSIC) from spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have become available. For the MIPAS full resolution period (2002–2004) these are V5H_CH4_21 and V5H_N2O_21 and for the reduced resolution period (2005–2012) these are V5R_CH4_224, V5R_CH4_225, V5R_N2O_224 and V5R_N2O_225. Here, we compare CH4 profiles to those measured by the Fourier Transform Spectrometer on board of the Atmospheric Chemistry Experiment (ACE-FTS), the HALogen Occultation Experiment (HALOE) and the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) and to the Global Cooperative Air Sampling Network (GCASN) surface data. We find the MIPAS CH4 profiles below 25 km to be typically higher in the order of 0.1 ppmv for both measurement periods. N2O profiles are compared to those measured by ACE-FTS, the Microwave Limb Sounder on board of the Aura satellite (Aura-MLS) and the Sub-millimetre Radiometer on board of the Odin satellite (Odin-SMR) as well as to the Halocarbons and other Atmospheric Trace Species Group (HATS) surface data. The mixing ratios from the satellite instruments agree well for the full resolution period. For the reduced resolution period, MIPAS produces similar values as Odin-SMR, but higher values than ACE-FTS and HATS. Below 27 km, the MIPAS profiles show higher mixing ratios than Aura-MLS, and lower values between 27 and 41 km. Cross comparisons between the two MIPAS measurement periods show that they generally agree quite well, but, especially for CH4, the reduced resolution period seems to produce slightly higher mixing ratios than the full resolution data

    Drift Corrected Trends and Periodic Variations in MIPAS IMK/IAA Ozone Measurements

    Get PDF
    Drifts, trends and periodic variations were calculated from monthly zonally averaged ozone profiles. The ozone profiles were derived from level-1b data of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) by means of the scientific level-2 processor run by the Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK). All trend and drift analyses were performed using a multilinear parametric trend model which includes a linear term, several harmonics with period lengths from 3 to 24 months and the quasi-biennial oscillation (QBO). Drifts at 2-sigma significance level were mainly negative for ozone relative to Aura MLS and Odin OSIRIS and negative or near zero for most of the comparisons to lidar measurements. Lidar stations used here include those at Hohenpeissenberg (47.8° N, 11.0 ° E), Lauder (45.0 ° S, 169.7 ° E), Mauna Loa (19.5 ° N, 155.6 ° W), Observatoire Haute Provence (43.9 ° N, 5.7 ° E) and Table Mountain (34.4 ° N, 117.7 ° W). Drifts against the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) were found to be mostly insignificant. The assessed MIPAS ozone trends cover the time period of July 2002 to April 2012 and range from -0.56 ppmv decade-1 to +0.48 ppmv decade-1 (-0.52 ppmv decade-1 to +0.47 ppmv decade-1 when displayed on pressure coordinates) depending on altitude/ pressure and latitude. From the empirical drift analyses we conclude that the real ozone trends might be slightly more positive/ less negative than those calculated from the MIPAS data, by conceding the possibility of MIPAS having a very small (approximately within -0.3 ppmv decade-1 negative drift for ozone. This leads to drift-corrected trends of -0.41 ppmv decade-1 to +0.55 ppmv decade-1 (-0.38 ppmv decade-1 to +0.53 ppmv decade-1 when displayed on pressure coordinates) for the time period covered by MIPAS Envisat measurements, with very few negative and large areas of positive trends at mid-latitudes for both hemispheres around and above 30 km (similar to 10 hPa). Negative trends are found in the tropics around 25 and 35 km (similar to 25 and 5 hPa), while an area of positive trends is located right above the tropical tropopause. These findings are in good agreement with the recent literature. Differences of the trends compared with the recent literature could be explained by a possible shift of the subtropical mixing barriers. Results for the altitude-latitude distribution of amplitudes of the quasi-biennial, annual and the semi-annual oscillation are overall in very good agreement with recent findings

    Validation of MIPAS IMK/IAA methane profiles

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is an infrared (IR) limb emission spectrometer on the Envisat platform. It measures trace gas distributions during day and night, pole-to-pole, over an altitude range from 6 to 70 km in nominal mode and up to 170 km in special modes, depending on the measurement mode, producing more than 1000 profiles day-1. We present the results of a validation study of methane, version V5R-CH4-222, retrieved with the IMK/IAA (Institut für Meteorologie und Klimaforschung, Karlsruhe/Instituto de Astrofisica de Andalucia, Grenada) MIPAS scientific level 2 processor. The level 1 spectra are provided by the ESA (European Space Agency) and version 5 was used. The time period covered is 2005-2012, which corresponds to the period when MIPAS measured trace gas distributions at a reduced spectral resolution of 0.0625 cm-1. The comparison with satellite instruments includes the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the HALogen Occultation Experiment (HALOE), the Solar Occultation For Ice Experiment (SOFIE) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). Furthermore, comparisons with MkIV balloon-borne solar occultation measurements and with air sampling measurements performed by the University of Frankfurt are presented. The validation activities include bias determination, assessment of stability, precision validation, analysis of histograms and comparison of corresponding climatologies. Above 50 km altitude, MIPAS methane mixing ratios agree within 3 % with ACE-FTS and SOFIE. Between 30 and 40 km an agreement within 3 % with SCIAMACHY has been found. In the middle stratosphere, there is no clear indication of a MIPAS bias since comparisons with various instruments contradict each other. In the lower stratosphere (below 25 km) MIPAS CH4 is biased high with respect to satellite instruments, and the most likely estimate of this bias is 14 %. However, in the comparison with CH4 data obtained from cryogenic whole-air sampler (cryosampler) measurements, there is no evidence of a high bias in MIPAS between 20 and 25 km altitude. Precision validation is performed on collocated MIPAS-MIPAS pairs and suggests a slight underestimation of its uncertainties by a factor of 1.2. No significant evidence of an instrumental drift has been found. © Author(s) 2015

    The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites

    Get PDF
    Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies, e.g addressing stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80°–70°S), the tropics (15°S–15°N) and the Northern Hemisphere mid-latitudes (50°–60°N) at four different altitudes (0.1, 3, 10 and 80hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed the consideration of the time period 1986–2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratios among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that most data sets can be considered in future observational and modelling studies, e.g. addressing stratospheric and lower mesospheric water vapour variability and trends, if data set specific characteristics (e.g. drift) and restrictions (e.g. temporal and spatial coverage) are taken into account

    Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    Get PDF
    More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1gK or an increase of 1gppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1gppmv or a temperature decrease of 1gK would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1gK and water vapour is increased by 1gppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Performing linear regression analyses we derive from the Envisat/MIPAS (2002-2012) and Aura/MLS (2004-2014) observations predominantly positive changes in the potential temperature range 350 to 1000gK. The linear changes in water vapour derived from Envisat/MIPAS observations are largely insignificant, while those from Aura/MLS are mostly significant. For the temperature neither of the two instruments indicate any significant changes. Given the strong inter-annual variation observed in water vapour and particular temperature the severe denitrification observed in 2010/11 cannot be directly related to any changes in water vapour and temperature since the millennium. However, the observations indicate a clear correlation between cold winters and enhanced water vapour mixing ratios. This indicates a connection between dynamical and radiative processes that govern water vapour and temperature in the Arctic lower stratosphere. © Author(s) 2016

    Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE)

    No full text
    International audienceThe Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Water vapour (H2O), one of the most important molecules for climate and atmospheric chemistry, is one of the key species provided by the two principal instruments, the infrared Fourier Transform Spectrometer (ACE-FTS) and the MAESTRO UV-Visible spectrometer (ACE-MAESTRO). The first instrument performs measurements on several lines in the 1362?2137 cm?1 range, from which vertically resolved H2O concentration profiles are retrieved, from 7 to 90 km altitude. ACE-MAESTRO measures profiles using the water absorption band in the near infrared part of the spectrum at 926.0?969.7 nm. This paper presents a comprehensive validation of the ACE-FTS profiles. We have compared the H2O volume mixing ratio profiles with space-borne (SAGE II, HALOE, POAM III, MIPAS, SMR) observations and measurements from balloon-borne frostpoint hygrometers and a ground based lidar. We show that the ACE-FTS measurements provide H2O profiles with small retrieval uncertainties in the stratosphere (better than 5% from 15 to 70 km, gradually increasing above). The situation is unclear in the upper troposphere, due mainly to the high variability of the water vapour volume mixing ratio in this region. A new water vapour data product from the ACE-MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is also presented and initial comparisons with ACE-FTS are discussed
    corecore