147 research outputs found

    Experimental Control and Characterization of Autophagy in Drosophila

    Get PDF
    Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy

    Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG

    Get PDF
    Beclin 1 is a core component of the Class III Phosphatidylinositol 3-Kinase VPS34 complex. The coiled coil domain of Beclin 1 serves as an interaction platform for assembly of distinct Atg14L- and UVRAG-containing complexes to modulate VPS34 activity. Here we report the crystal structure of the coiled coil domain that forms an antiparallel dimer and is rendered metastable by a series of 'imperfect' a-d' pairings at its coiled coil interface. Atg14L and UVRAG promote the transition of metastable homodimeric Beclin 1 to heterodimeric Beclin1-Atg14L/UVRAG assembly. Beclin 1 mutants with their 'imperfect' a-d' pairings modified to enhance self-interaction, show distinctively altered interactions with Atg14L or UVRAG. These results suggest that specific utilization of the dimer interface and modulation of the homodimer–heterodimer transition by Beclin 1-interacting partners may underlie the molecular mechanism that controls the formation of various Beclin1–VPS34 subcomplexes to exert their effect on an array of VPS34-related activities, including autophagy

    Synthesis and Evaluation of 99mTc-Labelled Monoclonal Antibody 1D09C3 for Molecular Imaging of Major Histocompatibility Complex Class II Protein Expression

    Get PDF
    Purpose: It is known that major histocompatibility complex class II protein HLA-DR is highly expressed in B-cell lymphomas and in a variety of autoimmune and inflammatory diseases. Therefore, a radiolabelled fully humanized IgG4 monoclonal antibody (mAb) can provide useful prognostic and diagnostic information. Aims of the present study were to radiolabel an anti-HLA-DR mAb with technetium-99m and to evaluate its binding specificity, tissue distribution and targeting potential. Procedures: For labelling, we compared a direct method, after 2-mercaptoethanol (2-ME) reduction of disulphide bonds, with a two-step labelling method, using a heterobifunctional succinimidyl-6-hydrazinonicotinate hydrochloride chelator. Several in vitro quality controls and in vivo experiments in mice were performed. Results: We obtained highest labelling efficiency (LE, 998%) and specific activity (SA; 5,550 MBq/mg) via the direct method. In vitro quality control showed good stability, structural integrity and retention of the binding properties of the labelled mAb. The biodistribution in mice showed high and persistent uptake in spleen and suggests kidney and liver-mediated clearanc

    A novel immunoscintigraphy technique using metabolizable linker with angiotensin II treatment

    Get PDF
    Immunoscintigraphy is a tumour imaging technique that can have specificity, but high background radioactivity makes it difficult to obtain tumour imaging soon after the injection of radioconjugate. The aim of this study is to see whether clear tumour images can be obtained soon after injection of a radiolabelled reagent using a new linker with antibody fragments (Fab), in conditions of induced hypertension in mice. Fab fragments of a murine monoclonal antibody against human osteosarcoma were labelled with radioiodinated 3β€²-iodohippuryl N-Ι›-maleoyl-L-lysine (HML) and were injected intravenously to tumour-bearing mice. Angiotensin II was administered for 4 h before and for 1 h after the injection of radiolabelled Fab. Kidney uptake of 125I-labelled-HML-Fab was much lower than that of 125I-labelled-Fab radioiodinated by the chloramine-T method, and the radioactivity of tumour was increased approximately two-fold by angiotensin II treatment at 3 h after injection, indicating high tumour-to-normal tissue ratios. A clear tumour image was obtained with 131I-labelled-HML-Fab at 3 h post-injection. The use of HML as a radiolabelling reagent, combined with angiotensin II treatment, efficiently improved tumour targeting and enabled the imaging of tumours. These results suggest the feasibility of PET scan using antibody fragment labelled with 18F-fluorine substitute for radioiodine. Β© 1999 Cancer Research Campaig

    Clathrin and LRP-1-Independent Constitutive Endocytosis and Recycling of uPAR

    Get PDF
    Background: The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. Methodology/Principal Findings: In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. Conclusions/Significance: These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism couple

    Phosphoinositide Regulation of Integrin Trafficking Required for Muscle Attachment and Maintenance

    Get PDF
    Muscles must maintain cell compartmentalization when remodeled during development and use. How spatially restricted adhesions are regulated with muscle remodeling is largely unexplored. We show that the myotubularin (mtm) phosphoinositide phosphatase is required for integrin-mediated myofiber attachments in Drosophila melanogaster, and that mtm-depleted myofibers exhibit hallmarks of human XLMTM myopathy. Depletion of mtm leads to increased integrin turnover at the sarcolemma and an accumulation of integrin with PI(3)P on endosomal-related membrane inclusions, indicating a role for Mtm phosphatase activity in endocytic trafficking. The depletion of Class II, but not Class III, PI3-kinase rescued mtm-dependent defects, identifying an important pathway that regulates integrin recycling. Importantly, similar integrin localization defects found in human XLMTM myofibers signify conserved MTM1 function in muscle membrane trafficking. Our results indicate that regulation of distinct phosphoinositide pools plays a central role in maintaining cell compartmentalization and attachments during muscle remodeling, and they suggest involvement of Class II PI3-kinase in MTM-related disease

    Pre-Clinical Evaluation of a 213Bi-Labeled 2556 Antibody to HIV-1 gp41 Glycoprotein in HIV-1 Mouse Models as a Reagent for HIV Eradication

    Get PDF
    Any strategy for curing HIV infection must include a method to eliminate viral-infected cells. Based on our earlier proof-of-principle results targeting HIV-1 infected cells with radiolabeled antibody (mAb) to gp41 viral antigen, we embarked on identifying a suitable candidate mAb for preclinical development.Among the several human mAbs to gp41 tested, mAb 2556 was found to have high affinity, reactivity with multimeric forms of gp41 present on both the surface of virus particles and cells expressing HIV-1 Env, and recognition of a highly conserved epitope of gp41 shared by all HIV-1 subtypes. Also, mAb 2556 was the best in competition with HIV-1+ serum antibodies, which is an extremely important consideration for efficacy in the treatment of HIV patients. When radiolabeled with alpha-emitting radionuclide 213-Bismuth ((213)Bi) - (213)Bi-2556 efficiently and specifically killed ACH-2 human lymphocytes chronically infected with HIV-1, and HIV-1 infected human peripheral blood mononuclear cells (hPBMCs). The number of binding sites for (213)Bi-2556 on the surface of the infected cells was >10(6). The in vivo experiments were performed in two HIV-1 mouse models--splenic and intraperitoneal. In both models, the decrease in HIV-1 infected hPBMCs from the spleens and peritoneum, respectively, was dose-dependent with the most pronounced killing of hPBMCs observed in the 100 Β΅Ci (213)Bi-2556 group (P = 0.01). Measurement of the blood platelet counts and gross pathology of the treated mice demonstrated the lack of toxicity for (213)Bi-2556.We describe the preclinical development of a novel radiolabeled mAb reagent that could potentially be part of an HIV eradication strategy that is ready for translation into the clinic as the next step in its development. As viral antigens are very different from "self" human antigens - this approach promises high selectivity, increased efficacy and low toxicity, especially in comparison to immunotoxins

    The SNX-PX-BAR Family in Macropinocytosis: The Regulation of Macropinosome Formation by SNX-PX-BAR Proteins

    Get PDF
    Background: Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (> 0.2 mu m in diameter) endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX) family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture further implicates their functional involvement in macropinosome formation
    • …
    corecore