64 research outputs found

    Cell proliferation in human epiretinal membranes: characterization of cell types and correlation with disease condition and duration

    Get PDF
    To quantify the extent of cellular proliferation and immunohistochemically characterize the proliferating cell types in epiretinal membranes (ERMS) from four different conditions: proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy, post-retinal detachment, and idiopathic ERM. Forty-six ERMs were removed from patients undergoing vitrectomy and immediately fixed in paraformaldehyde. The membranes were processed whole and immunolabeled with either anti-MIB-1 or anti-SP6 to detect the K(i)-67 protein in proliferating cells, in combination with anti-glial fibrillary acidic protein or anti-vimentin to identify glia, anti-ezrin to identify retinal pigment epithelial cells, Ricinus communis to identify immune cells, and Hoechst to label nuclei. Digital images were collected using a laser scanning confocal microscope. The cell types were identified, their combined proliferative indices were tabulated as the average number of anti-K(i)-67-positive cells/mm(2) of tissue, and the number of dividing cells was related to the specific ocular condition and estimated disease duration. ERMs of all four types were shown to be highly cellular and contained proliferating cells identified as glia, retinal pigment epithelium, and of immune origin. In general, membranes identified as PVR had many more K(i)-67-positive cells in comparison to those in the other three categories, with the average number of K(i)-67-positive cells identified per mm(2) of tissue being 20.9 for proliferative diabetic retinopathy, 138.3 for PVR, 12.2 for post-retinal detachment, and 19.3 for idiopathic ERM. While all membrane types had dividing cells, their number was a relatively small fraction of the total number of cells present. The four ERM types studied demonstrated different cell types actively dividing at the time of removal, confirming that proliferation is a common event and does continue over many months. The low number of dividing cells at the time of removal in comparison to the total number of cells present, however, is an indicator that proliferation alone may not be responsible for the problems observed with the ERMs. Treatment strategies may need to take into consideration the timing of drug administration, as well as the contractile and possibly the inflammatory characteristics of the membranes to prevent the ensuing effects on the retin

    Child Studies Multiple - Collaborative play for thinking through theories and methods

    Get PDF
    This is the final version. Available on open access from Linköpings University Electronic Press via the DOI in this recordThis text is an exploration of collaborative thinking and writing through theories, methods, and experiences on the topic of the child, children, and childhood. It is a collaborative written text (with 32 authors) that sprang out of the experimental workshop Child Studies Multiple. The workshop and this text are about daring to stay with mess, “un-closure” , and uncertainty in order to investigate the (e)motions and complexities of being either a child or a researcher. The theoretical and methodological processes presented here offer an opportunity to shake the ground on which individual researchers stand by raising questions about scientific inspiration, theoretical and methodological productivity, and thinking through focusing on process, play, and collaboration. The effect of this is a questioning of the singular academic ‘I’ by exploring and showing what a plural ‘I’ can look like. It is about what the multiplicity of voice can offer research in a highly individualistic time. The article allows the reader to follow and watch the unconventional trial-and-error path of the ongoing-ness of exploring theories and methods together as a research community via methods of drama, palimpsest, and fictionary

    Breakpoint mapping of 13 large parkin deletions/duplications reveals an exon 4 deletion and an exon 7 duplication as founder mutations

    Get PDF
    Early-onset Parkinson’s disease (EOPD) has been associated with recessive mutations in parkin (PARK2). About half of the mutations found in parkin are genomic rearrangements, i.e., large deletions or duplications. Although many different rearrangements have been found in parkin before, the exact breakpoints involving these rearrangements are rarely mapped. In the present study, the exact breakpoints of 13 different parkin deletions/duplications, detected in 13 patients out of a total screened sample of 116 EOPD patients using Multiple Ligation Probe Amplification (MLPA) analysis, were mapped using real time quantitative polymerase chain reaction (PCR), long-range PCR and sequence analysis. Deletion/duplication-specific PCR tests were developed as a rapid and low cost tool to confirm MLPA results and to test family members or patients with similar parkin deletions/duplications. Besides several different deletions, an exon 3 deletion, an exon 4 deletion and an exon 7 duplication were found in multiple families. Haplotype analysis in four families showed that a common haplotype of 1.2 Mb could be distinguished for the exon 7 duplication and a common haplotype of 6.3 Mb for the deletion of exon 4. These findings suggest common founder effects for distinct large rearrangements in parkin

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    The pleasures for adults in children's fiction

    No full text

    Ganglion cell neurites in human idiopathic epiretinal membranes

    No full text
    AIM: To identify and confirm the presence of neural elements in idiopathic epiretinal membranes removed from patients' eyes during vitrectomy with epiretinal membrane peeling. METHODS: Human epiretinal membranes from patients with no other known eye disease and of varying durations were labelled immunohistochemically with antibodies for neurofilament protein, laminin and either vimentin or GFAP; proteins expressed in ganglion cells, the inner limiting membrane (ILM), and Muller cells, respectively. RESULTS: Anti-neurofilament labelled neurites, presumed to originate from ganglion cells, were found in all 32 idiopathic epiretinal membranes examined. The neurites were only observed in regions of anti-vimentin or -GFAP labelled glial cells, both of which were observed embedded in anti-laminin labelled material assumed to originate from the ILM. CONCLUSIONS: We show that neurofilamentous processes, presumed to originate from retinal ganglion cells, are found universally in idiopathic epiretinal membranes, suggesting that the presence of these membranes is sufficient to stimulate neurite growth in the absence of trauma or disease. In addition, since neurites were invariably found in association with glial cells, the glia may play a permissive role in neurite growth both within the retina and into extra-retinal glial membrane
    • 

    corecore