3,719 research outputs found

    On characteristic initial data for a star orbiting a black hole

    Full text link
    We take further steps in the development of the characteristic approach to enable handling the physical problem of a compact self-gravitating object, such as a neutron star, in close orbit around a black hole. We examine different options for setting the initial data for this problem and, in order to shed light on their physical relevance, we carry out short time evolution of this data. To this end we express the matter part of the characteristic gravity code so that the hydrodynamics are in conservation form. The resulting gravity plus matter relativity code provides a starting point for more refined future efforts at longer term evolution. In the present work we find that, independently of the details of the initial gravitational data, the system quickly flushes out spurious gravitational radiation and relaxes to a quasi-equilibrium state with an approximate helical symmetry corresponding to the circular orbit of the star.Comment: 20 pages, 10 figure

    Test of a new onboard shiprouteing system

    Get PDF

    Deuterium toward the WD0621-376 sight line: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    Full text link
    Far Ultraviolet Spectroscopic Explorer observations are presented for WD0621-376, a DA white dwarf star in the local interstellar medium (LISM) at a distance of about 78 pc. The data have a signal-to-noise ratio of about 20-40 per 20 km/s resolution element and cover the wavelength range 905-1187 \AA. LISM absorption is detected in the lines of D I, C II, C II*, C III, N I, N II, N III, O I, Ar I, and Fe II. This sight line is partially ionized, with an ionized nitrogen fraction of > 0.23. We determine the ratio D/O=(3.9±1.01.3)×102D/O = (3.9 \pm ^{1.3}_{1.0})\times 10^{-2} (2σ\sigma). Assuming a standard interstellar oxygen abundance, we derive D/H1.3×105{\rm D/H} \approx 1. 3 \times 10^{-5}. Using the value of N(H I) derived from EUVE data gives a similar D/H ratio. The D I/N I ratio is (3.3±0.81.0)×101(3.3 \pm ^{1.0}_{0.8})\times 10^{-1} (2σ\sigma).Comment: accepted for publication in the ApJ

    Low Redshift Intergalactic Absorption Lines in the Spectrum of HE0226-4110

    Full text link
    We present an analysis of the FUSE and STIS E140M spectra of HE0226-4110 (z=0.495). We detect 56 Lyman absorbers and 5 O VI absorbers. The number of intervening O VI systems per unit redshift with W>50 m\AA is dN(O VI)/dz~ 11. The O VI systems unambiguously trace hot gas only in one case. For the 4 other O VI systems, photoionization and collisional ionization models are viable options to explain the observed column densities of the O VI and the other ions. If the O VI systems are mostly photoionized, only a fraction of the observed O VI will contribute to the baryonic density of the warm-hot ionized medium (WHIM) along this line of sight. Combining our results with previous ones, we show that there is a general increase of N(O VI) with increasing b(O VI). Cooling flow models can reproduce the N-b distribution but fail to reproduce the observed ionic ratios. A comparison of the number of O I, O II, O III, O IV, and O VI systems per unit redshift show that the low-z IGM is more highly ionized than weakly ionized. We confirm that photoionized O VI systems show a decreasing ionization parameter with increasing H I column density. O VI absorbers with collisional ionization/photoionization degeneracy follow this relation, possibly suggesting that they are principally photoionized. We find that the photoionized O VI systems in the low redshift IGM have a median abundance of 0.3 solar. We do not find additional Ne VIII systems other than the one found by Savage et al., although our sensitivity should have allowed the detection of Ne VIII in O VI systems at T~(0.6-1.3)x10^6 K (if CIE applies). Since the bulk of the WHIM is believed to be at temperatures T>10^6 K, the hot part of the WHIM remains to be discovered with FUV--EUV metal-line transitions.Comment: Accepted for publication in the ApJS. Full resolution figures available at http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJS63975.preprint.pd

    The DRIFT Project: Searching for WIMPS with a Directional Detector

    Get PDF
    A low pressure time projection chamber for the detection of WIMPs is discussed. Discrimination against Compton electron background in such a device should be very good, and directional information about the recoil atoms would be obtainable. If a full 3-D reconstruction of the recoil tracks can be achieved, Monte Carlo studies indicate that a WIMP signal could be identified with high confidence from as few as 30 detected WIMP-nucleus scattering events.Comment: 5 pages, 3 figures. Presented at Dark 98, Heidelberg, July 1998, and to appear in conference proceeding

    Robustness of the Blandford-Znajek mechanism

    Full text link
    The Blandford-Znajek mechanism has long been regarded as a key ingredient in models attempting to explain powerful jets in AGNs, quasars, blazzars etc. In such mechanism, energy is extracted from a rotating black hole and dissipated at a load at far distances. In the current work we examine the behaviour of the BZ mechanism with respect to different boundary conditions, revealing the mechanism robustness upon variation of these conditions. Consequently, this work closes a gap in our understanding of this important scenario.Comment: 7 pages, accepted in CQ

    Two-divisibility of the coefficients of certain weakly holomorphic modular forms

    Full text link
    We study a canonical basis for spaces of weakly holomorphic modular forms of weights 12, 16, 18, 20, 22, and 26 on the full modular group. We prove a relation between the Fourier coefficients of modular forms in this canonical basis and a generalized Ramanujan tau-function, and use this to prove that these Fourier coefficients are often highly divisible by 2.Comment: Corrected typos. To appear in the Ramanujan Journa
    corecore