291 research outputs found
PANIC: the new panoramic NIR camera for Calar Alto
PANIC is a wide-field NIR camera, which is currently under development for
the Calar Alto observatory (CAHA) in Spain. It uses a mosaic of four Hawaii-2RG
detectors and covers the spectral range from 0.8-2.5 micron(z to K-band). The
field-of-view is 30x30 arcmin. This instrument can be used at the 2.2m
telescope (0.45arcsec/pixel, 0.5x0.5 degree FOV) and at the 3.5m telescope
(0.23arcsec/pixel, 0.25x0.25 degree FOV). The operating temperature is about
77K, achieved by liquid Nitrogen cooling. The cryogenic optics has three flat
folding mirrors with diameters up to 282 mm and nine lenses with diameters
between 130 mm and 255 mm. A compact filter unit can carry up to 19 filters
distributed over four filter wheels. Narrow band (1%) filters can be used. The
instrument has a diameter of 1.1 m and it is about 1 m long. The weight limit
of 400 kg at the 2.2m telescope requires a light-weight cryostat design. The
aluminium vacuum vessel and radiation shield have wall thicknesses of only 6 mm
and 3 mm respectively.Comment: This paper has been presented in the SPIE of Astronomical Telescopes
and Instrumentation 2008 in Marseille (France
Aging (Albany NY)
The combination of functional genomics with next generation sequencing facilitates new experimental strategies for addressing complex biological phenomena. Here, we report the identification of a gain-of-function allele of peroxiredoxin (thioredoxin peroxidase, Tsa1p) via whole-genome re-sequencing of a dominantSaccharomyces cerevisiae mutant obtained by chemical mutagenesis. Yeast strain K6001, a screening system for lifespan phenotypes, was treated with ethyl methanesulfonate (EMS). We isolated an oxidative stress-resistant mutant (B7) which transmitted this phenotype in a background-independent, monogenic and dominant way. By massive parallel pyrosequencing, we generated an 38.8 fold whole-genome coverage of the strains, which differed in 12,482 positions from the reference (S288c) genome. Via a subtraction strategy, we could narrow this number to 13 total and 4 missense nucleotide variations that were specific for the mutant. Via expression in wild type backgrounds, we show that one of these mutations, exchanging a residue in the peroxiredoxin Tsa1p, was responsible for the mutant phenotype causing background-independent dominant oxidative stress-resistance. These effects were not provoked by altered Tsa1p levels, nor could they be simulated by deletion, haploinsufficiency or over-expression of the wild-type allele. Furthermore, via both a mother-enrichment technique and a micromanipulation assay, we found a robust premature aging phenotype of this oxidant-resistant strain. Thus, TSA1-B7 encodes for a novel dominant form of peroxiredoxin, and establishes a new connection between oxidative stress and aging. In addition, this study shows that the re-sequencing of entire genomes is becoming a promising alternative for the identification of functional alleles in approaches of classic molecular genetics
Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol.
Purpose Flow-compensated (FC) diffusion-weighted MRI (DWI) for intravoxel-incoherent motion (IVIM) modeling allows for a more detailed description of tissue microvasculature than conventional IVIM. The long acquisition time of current FC-IVIM protocols, however, has prohibited clinical application. Therefore, we developed an optimized abdominal FC-IVIM acquisition with a clinically feasible scan time.Methods Precision and accuracy of the FC-IVIM parameters were assessed by fitting the FC-IVIM model to signal decay curves, simulated for different acquisition schemes. Diffusion-weighted acquisitions were added subsequently to the protocol, where we chose the combination of b-value, diffusion time and gradient profile (FC or bipolar) that resulted in the largest improvement to its accuracy and precision. The resulting two optimized FC-IVIM protocols with 25 and 50 acquisitions (FC-IVIMopt25 and FC-IVIMopt50 ), together with a complementary acquisition consisting of 50 diffusion-weighting (FC-IVIMcomp ), were acquired in repeated abdominal free-breathing FC-IVIM imaging of seven healthy volunteers. Intersession and intrasession within-subject coefficient of variation of the FC-IVIM parameters were compared for the liver, spleen, and kidneys.Results Simulations showed that the performance of FC-IVIM improved in tissue with larger perfusion fraction and signal-to-noise ratio. The scan time of the FC-IVIMopt25 and FC-IVIMopt50 protocols were 8 and 16 min. The best in vivo performance was seen in FC-IVIMopt50 . The intersession within-subject coefficients of variation of FC-IVIMopt50 were 11.6%, 16.3%, 65.5%, and 36.0% for FC-IVIM model parameters diffusivity, perfusion fraction, characteristic time and blood flow velocity, respectively.Conclusions We have optimized the FC-IVIM protocol, allowing for clinically feasible scan times (8-16 min)
Water soluble nickel and iron salts for hydroxymethylfurfural HMF and water oxidation the simplest precatalysts?
Electrochemical production of large scale chemicals and fuels is critical to reaching carbon neutrality. However, the required anodic oxidation reactions, namely the oxygen evolution reaction OER or the oxidation of organics into value added products, suffer from large overpotentials. To address this challenge, researchers have been widely investigating non water soluble pre catalysts to operate in the aqueous electrolyte. On the contrary, in this work, we approach a rapid, easy, and green carbon cloth electrode preparation using merely water soluble nitrate precursors and ethanol as chemicals and no heating steps. The drop coated, water soluble transition metal salts reconstruct rapidly into the respective oxyhydroxides under OER conditions, with the oxyanion acting as a beneficial sacrificial reagent. This approach is shown herein for nickel iron catalysts and their successful application for the OER 220 mV overpotential at 10 mA cm amp; 8722;2, long term stability of 40 h at 100 mA cm amp; 8722;2 and the oxidation of 5 hydroxymethylfurfural HMF, quantitative faradaic efficiency . We compare both reactions with both electrodes closely and find that the iron free sample is more active for the HMF oxidation in regimes where mass transport is not the main limiting factor. We anticipate that this simple electrode preparation approach can find wide application in electrocatalysis and beyon
GRAVITY: getting to the event horizon of Sgr A*
We present the second-generation VLTI instrument GRAVITY, which currently is
in the preliminary design phase. GRAVITY is specifically designed to observe
highly relativistic motions of matter close to the event horizon of Sgr A*, the
massive black hole at center of the Milky Way. We have identified the key
design features needed to achieve this goal and present the resulting
instrument concept. It includes an integrated optics, 4-telescope, dual feed
beam combiner operated in a cryogenic vessel; near infrared wavefront sensing
adaptive optics; fringe tracking on secondary sources within the field of view
of the VLTI and a novel metrology concept. Simulations show that the planned
design matches the scientific needs; in particular that 10 microarcsecond
astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given
the availability of suitable phase reference sources.Comment: 13 pages, 11 figures, to appear in the conference proceedings of SPIE
Astronomical Instrumentation, 23-28 June 2008, Marseille, Franc
An Intermetallic CaFe6Ge6 Approach to Unprecedented Ca Fe O Electrocatalyst for Efficient Alkaline Oxygen Evolution Reaction
Based on the low cost and relatively high catalytic activity, considerable efforts have been devoted towards developing redox active transition metal TM oxygen electrocatalysts for the alkaline oxygen evolution reaction OER while the role of redox inactive alkaline earth metals has often been neglected in OER. Herein, for the first time, we developed a novel ternary intermetallic CaFe6Ge6 precatalyst, whose surface rapidly transforms into a porous ultrathin Ca amp; 8722;Fe amp; 8722;O heteroshell structure during alkaline OER through the oxidative leaching of surficial Ge. Benefiting from synergistic effects, this highly efficient OER active material with distinct Ca amp; 8722;Fe amp; 8722;O layers has a large electrochemical surface area and more exposed active Fe sites than a Ca free FeOx phase. Also, the presence of Ca in Ca amp; 8722;Fe amp; 8722;O is responsible for the enhanced transport and activation of hydroxyls and related OER reaction intermediate as unequivocally illustrated by a combination of quasi in situ Raman spectroscopy and various ex situ method
Black Hole Mass Estimates Based on CIV are Consistent with Those Based on the Balmer Lines
Using a sample of high-redshift lensed quasars from the CASTLES project with
observed-frame ultraviolet or optical and near-infrared spectra, we have
searched for possible biases between supermassive black hole (BH) mass
estimates based on the CIV, Halpha and Hbeta broad emission lines. Our sample
is based upon that of Greene, Peng & Ludwig, expanded with new near-IR
spectroscopic observations, consistently analyzed high S/N optical spectra, and
consistent continuum luminosity estimates at 5100A. We find that BH mass
estimates based on the FWHM of CIV show a systematic offset with respect to
those obtained from the line dispersion, sigma_l, of the same emission line,
but not with those obtained from the FWHM of Halpha and Hbeta. The magnitude of
the offset depends on the treatment of the HeII and FeII emission blended with
CIV, but there is little scatter for any fixed measurement prescription. While
we otherwise find no systematic offsets between CIV and Balmer line mass
estimates, we do find that the residuals between them are strongly correlated
with the ratio of the UV and optical continuum luminosities. Removing this
dependency reduces the scatter between the UV- and optical-based BH mass
estimates by a factor of approximately 2, from roughly 0.35 to 0.18 dex. The
dispersion is smallest when comparing the CIV sigma_l mass estimate, after
removing the offset from the FWHM estimates, and either Balmer line mass
estimate. The correlation with the continuum slope is likely due to a
combination of reddening, host contamination and object-dependent SED shapes.
When we add additional heterogeneous measurements from the literature, the
results are unchanged.Comment: Accepted for publication in The Astrophysical Journal. 37 text pages
+ 8 tables + 23 figures. Updated with comments by the referee and with a
expanded discussion on literature data including new observation
The Turkey Ig-like receptor family: identification, expression and function.
The chicken leukocyte receptor complex located on microchromosome 31 encodes the chicken Ig-like receptors (CHIR), a vastly expanded gene family which can be further divided into three subgroups: activating CHIR-A, bifunctional CHIR-AB and inhibitory CHIR-B. Here, we investigated the presence of CHIR homologues in other bird species. The available genome databases of turkey, duck and zebra finch were screened with different strategies including BLAST searches employing various CHIR sequences, and keyword searches. We could not identify CHIR homologues in the distantly related zebra finch and duck, however, several partial and complete sequences of CHIR homologues were identified on chromosome 3 of the turkey genome. They were designated as turkey Ig-like receptors (TILR). Using cDNA derived from turkey blood and spleen RNA, six full length TILR could be amplified and further divided according to the typical sequence features into one activating TILR-A, one inhibitory TILR-B and four bifunctional TILR-AB. Since the TILR-AB sequences all displayed the critical residues shown to be involved in binding to IgY, we next confirmed the IgY binding using a soluble TILR-AB1-huIg fusion protein. This fusion protein reacted with IgY derived from various gallinaceous birds, but not with IgY from other bird species. Finally, we tested various mab directed against CHIR for their crossreactivity with either turkey or duck leukocytes. Whereas no staining was detectable with duck cells, the CHIR-AB1 specific mab 8D12 and the CHIR-A2 specific mab 13E2 both reacted with a leukocyte subpopulation that was further identified as thrombocytes by double immunofluorescence employing B-cell, T-cell and thrombocyte specific reagents. In summary, although the turkey harbors similar LRC genes as the chicken, their distribution seems to be distinct with predominance on thrombocytes rather than lymphocytes
An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status
MATISSE is the second-generation mid-infrared spectrograph and imager for the
Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric
instrument will allow significant advances by opening new avenues in various
fundamental research fields: studying the planet-forming region of disks around
young stellar objects, understanding the surface structures and mass loss
phenomena affecting evolved stars, and probing the environments of black holes
in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the
spectral domain of current optical interferometers by offering the L and M
bands in addition to the N band. This will open a wide wavelength domain,
ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band)
/ 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared
imaging - closure-phase aperture-synthesis imaging - with up to four Unit
Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE
will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we
present one of the main science objectives, the study of protoplanetary disks,
that has driven the instrument design and motivated several VLTI upgrades
(GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a
description of the signal on the detectors and an evaluation of the expected
performances. We also discuss the current status of the MATISSE instrument,
which is entering its testing phase, and the foreseen schedule for the next two
years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June
2016, 11 pages, 6 Figure
- …