796 research outputs found

    An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity

    Get PDF
    In pathological conditions interpretation of functional magnetic resonance imaging (fMRI) results can be difficult. This is due to a reliance on the assumed coupling between neuronal activity and changes in cerebral blood flow (CBF) and oxygenation. We wanted to investigate the coupling between blood oxygen level dependant contrast (BOLD) and CBF time courses in epilepsy patients with generalised spike wave activity (GSW) to better understand the underlying mechanisms behind the EEG-fMRI signal changes observed, especially in regions of negative BOLD response (NBR). Four patients with frequent GSW were scanned with simultaneous electroencephalographic (EEG)-fMRI with BOLD and arterial spin labeling (ASL) sequences. We examined the relationship between simultaneous CBF and BOLD measurements by looking at the correlation of the two signals in terms of percentage signal change on a voxel-by-voxel basis. This method is not reliant on coincident activation. BOLD and CBF were positively correlated in patients with epilepsy during background EEG activity and GSW. The subject average value of the ΔCBF/ΔBOLD slope lay between +19 and +36 and also showed spatial variation which could indicate areas with altered vascular response. There was not a significant difference between ΔCBF/ΔBOLD during GSW, suggesting that neurovascular coupling to BOLD signal is generally maintained between states and, in particular, within areas of NBR

    BOLD and perfusion changes during epileptic generalised spike wave activity

    Get PDF
    It is unclear whether neurovascular coupling is maintained during epileptic discharges. Knowing this is important to allow appropriate inferences from functional imaging studies of epileptic activity. Recent blood oxygen level-dependent (BOLD) functional MRI (fMRI) studies have demonstrated negative BOLD responses (NBR) in frontal, parietal and posterior cingulate cortices during generalised spike wave activity (GSW). We hypothesized that GSW-related NBR commonly reflect decreased cerebral blood flow (CBF). We measured BOLD and cerebral blood flow responses using simultaneous EEG with BOLD and arterial spin label (ASL) fMRI at 3 T. Four patients with epilepsy were studied; two with idiopathic generalized epilepsy (IGE) and two with secondary generalized epilepsy (SGE). We found GSW-related NBR in frontal, parietal and posterior cingulate cortices. We measured the coupling between BOLD and CBF changes during GSW and normal background EEG and found a positive correlation between the simultaneously measured BOLD and CBF throughout the imaged volume. Frontal and thalamic activation were seen in two patients with SGE, concordant with the electro-clinical features of their epilepsy. There was striking reproducibility of the GSW-associated BOLD response in subjects previously studied at 1.5 T. Our results show a preserved relationship between BOLD and CBF changes during rest and GSW activity consistent with normal neurovascular coupling in patients with generalized epilepsy and in particular during GSW activity. Cortical activations appear to reflect areas of discharge generation whilst deactivations reflect changes in conscious resting state activity

    EEG–fMRI mapping of asymmetrical delta activity in a patient with refractory epilepsy is concordant with the epileptogenic region determined by intracranial EEG

    Get PDF
    We studied a patient with refractory focal epilepsy using continuous EEG-correlated fMRI. Seizures were characterized by head turning to the left and clonic jerking of the left arm, suggesting a right frontal epileptogenic region. Interictal EEG showed occasional runs of independent nonlateralized slow activity in the delta band with right frontocentral dominance and had no lateralizing value. Ictal scalp EEG had no lateralizing value. Ictal scalp EEG suggested right-sided central slow activity preceding some seizures. Structural 3-T MRI showed no abnormality. There was no clear epileptiform abnormality during simultaneous EEG–fMRI. We therefore modeled asymmetrical EEG delta activity at 1–3 Hz near frontocentral electrode positions. Significant blood oxygen level-dependent (BOLD) signal changes in the right superior frontal gyrus correlated with right frontal oscillations at 1–3 Hz but not at 4–7 Hz and with neither of the two frequency bands when derived from contralateral or posterior electrode positions, which served as controls. Motor fMRI activations with a finger-tapping paradigm were asymmetrical: they were more anterior for the left hand compared with the right and were near the aforementioned EEG-correlated signal changes. A right frontocentral perirolandic seizure onset was identified with a subdural grid recording, and electric stimulation of the adjacent contact produced motor responses in the left arm and after discharges. The fMRI localization of the left hand motor and the detected BOLD activation associated with modeled slow activity suggest a role for localization of the epileptogenic region with EEG–fMRI even in the absence of clear interictal discharges

    EEG–fMRI of idiopathic and secondarily generalized epilepsies

    Get PDF
    We used simultaneous EEG and functional MRI (EEG–fMRI) to study generalized spike wave activity (GSW) in idiopathic and secondary generalized epilepsy (SGE). Recent studies have demonstrated thalamic and cortical fMRI signal changes in association with GSW in idiopathic generalized epilepsy (IGE). We report on a large cohort of patients that included both IGE and SGE, and give a functional interpretation of our findings. Forty-six patients with GSW were studied with EEG–fMRI; 30 with IGE and 16 with SGE. GSW-related BOLD signal changes were seen in 25 of 36 individual patients who had GSW during EEG–fMRI. This was seen in thalamus (60%) and symmetrically in frontal cortex (92%), parietal cortex (76%), and posterior cingulate cortex/precuneus (80%). Thalamic BOLD changes were predominantly positive and cortical changes predominantly negative. Group analysis showed a negative BOLD response in the cortex in the IGE group and to a lesser extent a positive response in thalamus. Thalamic activation was consistent with its known role in GSW, and its detection in individual cases with EEG–fMRI may in part be related to the number and duration of GSW epochs recorded. The spatial distribution of the cortical fMRI response to GSW in both IGE and SGE involved areas of association cortex that are most active during conscious rest. Reduction of activity in these regions during GSW is consistent with the clinical manifestation of absence seizures

    Combined EEG-fMRI and tractography to visualise propagation of epileptic activity

    Get PDF
    In a patient with refractory temporal lobe epilepsy, EEG-fMRI showed activation in association with left anterior temporal interictal discharges, in the left temporal, parietal and occipital lobes. Dynamic causal modelling suggested propagation of neural activity from the temporal focus to the area of occipital activation. Tractography showed connections from the site of temporal lobe activation to the site of occipital activation. This demonstrates the principle of combining EEG-fMRI and tractography to delineate the pathways of propagation of epileptic activity

    Comparison of Different Strategies to Measure Medication Adherence via Claims Data in Patients With Chronic Heart Failure.

    Full text link
    Medication adherence correlates with morbidity and mortality in patients with chronic heart failure (CHF), but is difficult to assess. We conducted a retrospective methodological cohort study in 3,808 CHF patients, calculating adherence as proportion of days covered (PDC) utilizing claims data from 2010 to 2015. We aimed to compare different parameters' influence on the PDC of elderly CHF patients exemplifying a complex chronic disease. Investigated parameters were the assumed prescribed daily dose (PDD), stockpiling, and periods of hospital stay. Thereby, we investigated a new approach using the PDD assigned to different percentiles. The different dose assumptions had the biggest influence on the PDC, with variations from 41.9% to 83.7%. Stockpiling and hospital stays increased the values slightly. These results queries that a reliable PDC can be calculated with an assumed PDD. Hence, results based on an assumed PDD have to be interpreted carefully and should be presented with sensitivity analyses to show the PDC's possible range

    Causal hierarchy within the thalamo-cortical network in spike and wave discharges

    Get PDF
    Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al

    Heart Rate Reduction by Ivabradine Improves Aortic Compliance in Apolipoprotein E-Deficient Mice

    Get PDF
    Background: Impaired vascular compliance is associated with cardiovascular mortality. The effects of heart rate on vascular compliance are unclear. Therefore, we characterized effects of heart rate reduction (HRR) by I(f) current inhibition on aortic compliance and underlying molecular mechanisms in apolipoprotein E-deficient (ApoE–/–) mice. Methods: ApoE–/– mice fed a high-cholesterol diet and wild-type (WT) mice were treated with ivabradine (20 mg/kg/d) or vehicle for 6 weeks. Compliance of the ascending aorta was evaluated by MRI. Results: Ivabradine reduced heart rate by 113 ± 31 bpm (∼19%) in WT mice and by 133 ± 6 bpm (∼23%) in ApoE–/– mice. Compared to WT controls, ApoE–/– mice exhibited reduced distensibility and circumferential strain. HRR by ivabradine increased distensibility and circumferential strain in ApoE–/– mice but did not affect both parameters in WT mice. Ivabradine reduced aortic protein and mRNA expression of the angiotensin II type 1 (AT1) receptor and reduced rac1-GTPase activity in ApoE–/– mice. Moreover, membrane translocation of p47phox was inhibited. In ApoE–/– mice, HRR induced anti-inflammatory effects by reduction of aortic mRNA expression of IL-6, TNF-alpha and TGF-beta. Conclusion: HRR by ivabradine improves vascular compliance in ApoE–/– mice. Contributing mechanisms include downregulation of the AT1 receptor, attenuation of oxidative stress and modulation of inflammatory cytokine expression

    Awakening: Predicting external stimulation to force transitions between different brain states

    Get PDF
    A fundamental problem in systems neuroscience is how to force a transition from one brain state to another by external driven stimulation in, for example, wakefulness, sleep, coma, or neuropsychiatric diseases. This requires a quantitative and robust definition of a brain state, which has so far proven elusive. Here, we provide such a definition, which, together with whole-brain modeling, permits the systematic study in silico of how simulated brain stimulation can force transitions between different brain states in humans. Specifically, we use a unique neuroimaging dataset of human sleep to systematically investigate where to stimulate the brain to force an awakening of the human sleeping brain and vice versa. We show where this is possible using a definition of a brain state as an ensemble of "metastable substates," each with a probabilistic stability and occurrence frequency fitted by a generative whole-brain model, fine-tuned on the basis of the effective connectivity. Given the biophysical limitations of direct electrical stimulation (DES) of microcircuits, this opens exciting possibilities for discovering stimulation targets and selecting connectivity patterns that can ensure propagation of DES-induced neural excitation, potentially making it possible to create awakenings from complex cases of brain injury.Spanish Research Project PSI2016-75688-P (Agencia Estatal de Investigación/Fondo Europeo de Desarrollo Regional, European Union); by the European Union’s Horizon 2020 Re-search and Innovation Programme under Grant Agreements 720270 (Hu-man Brain Project [HBP] SGA1) and 785907 (HBP SGA2); and by the CatalanAgency for Management of University and Research Grants Programme 2017 SGR 1545. J. Cabral is supported by Portuguese Foundation for Sci-ence and Technology CEECIND/03325/2017, Portugal. M.L.K. is supportedby the European Research Council Consolidator Grant: CAREGIVING (615539) and Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117)
    • …
    corecore