987,573 research outputs found
Use of Ethanol-and-Turpentine-Baited Flight Traps to Monitor \u3ci\u3ePissodes\u3c/i\u3e Weevils (Coleoptera: Curculionidae) in Christmas Tree Plantations
Pissodes nemorensis and Pissodes strobi are major pests of pine production in eastern North America. Ethanol-and-turpentine baited traps were used here to monitor weevil populations in a Scotch pine Christmas tree plantation in Wisconsin. Baited pitfall traps were ineffective in trapping either weevil species. However, baited flight traps at 0.8 and 1.6 m above ground effectively captured flying weevils of both species, 70% of which were P. nemorensis. Females of both species were more attracted than males to the ethanoll turpentine baits. Significantly more female P. nemorensis and total P. nemorensis were trapped at a height of 0.8 m than 1.6 m. There was no significant difference in male P. nemorensis response to the different heights, nor was there a significant difference in response to trap height by P. strobi
Initial phases of massive star formation in high infrared extinction clouds. II. Infall and onset of star formation
The onset of massive star formation is not well understood because of
observational and theoretical difficulties. To find the dense and cold clumps
where massive star formation can take place, we compiled a sample of high
infrared extinction clouds, which were observed previously by us in the 1.2 mm
continuum emission and ammonia. We try to understand the star-formation stages
of the clumps in these high extinction clouds by studying the infall and
outflow properties, the presence of a young stellar object (YSO), and the level
of the CO depletion through a molecular line survey with the IRAM 30m and APEX
12m telescopes. Moreover, we want to know if the cloud morphology, quantified
through the column density contrast between the clump and the clouds, has an
impact on the star formation occurring inside it. We find that the HCO+(1-0)
line is the most sensitive for detecting infalling motions. SiO, an outflow
tracer, was mostly detected toward sources with infall, indicating that infall
is accompanied by collimated outflows. The presence of YSOs within a clump
depends mostly on its column density; no signs of YSOs were found below 4E22
cm-2. Star formation is on the verge of beginning in clouds that have a low
column density contrast; infall is not yet present in the majority of the
clumps. The first signs of ongoing star formation are broadly observed in
clouds where the column density contrast between the clump and the cloud is
higher than two; most clumps show infall and outflow. Finally, the most evolved
clumps are in clouds that have a column density contrast higher than three;
almost all clumps have a YSO, and in many clumps, the infall has already
halted. Hence, the cloud morphology, based on the column density contrast
between the cloud and the clumps, seems to have a direct connection with the
evolutionary stage of the objects forming inside
Transition from Ekman flow to Taylor vortex flow in superfluid helium
By numerically computing the steady axisymmetric flow of helium II confined
inside a finite aspect ratio Couette annulus, we determine the transition from
Ekman flow to Taylor vortex flow as a function of temperature and aspect
ratio.We find that the low-Reynolds number flow is quite different to that of a
classical fluid, particularly at lower temperatures.At high aspect ratio our
results confirm the existing linear stability theory of the onset of Taylor
vortices, which assumes infinitely long cylinders.Comment: 12 pages, 8 figures; submitte
Pattern reconstruction and sequence processing in feed-forward layered neural networks near saturation
The dynamics and the stationary states for the competition between pattern
reconstruction and asymmetric sequence processing are studied here in an
exactly solvable feed-forward layered neural network model of binary units and
patterns near saturation. Earlier work by Coolen and Sherrington on a parallel
dynamics far from saturation is extended here to account for finite stochastic
noise due to a Hebbian and a sequential learning rule. Phase diagrams are
obtained with stationary states and quasi-periodic non-stationary solutions.
The relevant dependence of these diagrams and of the quasi-periodic solutions
on the stochastic noise and on initial inputs for the overlaps is explicitly
discussed.Comment: 9 pages, 7 figure
- …