57 research outputs found

    Skyrmion in teleparallel gravity

    Full text link
    The Einstein-Skyrme system became famous for its black hole solutions that admits fractional baryon number outside the horizon, thus violating the "{\it no hair}" conjecture. In this article, we extend the Skyrmion to teleparallel gravity framework and investigate the teleparallel-Skyrme system in the context of the Teleparallel Equivalent of General Relativity (TEGR) and f(T)f(T) power law gravity. We demonstrate the emergence of the fractional baryon number outside the horizon and its dependence on the cosmological constant (Λ\Lambda). The solutions in TEGR (f(T)=T2Λf(T) = -T-2\Lambda), as expected, matches with the Einstein-Skyrme system with the requirement of Λ>0\Lambda > 0. Interestingly, in power law gravity (f(T)=TτT22Λf(T) = -T - \tau T^2 -2\Lambda), the reality conditions requires the cosmological constant to be positive and stay within the range Λmin<Λ<Λmax\Lambda_{min} < \Lambda < \Lambda_{max}. And, in the limit power law gravity reaches TEGR (τ0\tau \rightarrow 0), we get back the condition on the cosmological constant with Λmin0\Lambda_{min}\rightarrow 0 and Λmax\Lambda_{max} \rightarrow \infty.Comment: 19 pages, 6 figure

    Rapunzel Syndrome: Trichobezoar in a 13 Years Old Girl

    Get PDF
    Background: Rapunzel syndrome is a rare type of trichobezoar with an extension of the hair into the small bowel. Clinical presentation is deceptive and vague ranging from abdominal mass to gastrointestinal symptoms. Case Presentation: We present a 13 years old girl with Rapunzel syndrome, where the trichobezoar was not suspected at all especially with negative history of trichophagia. In majority of the cases the diagnosis was made very late in the history of the disease, at a stage where surgery is the only cure for this syndrome. Conclusion: A trichobezoar represents a serious surgical condition. It is important to consider such diagnosis in face of suggestive symptoms, even if signs of trichotillomania are not present. The discrepancies between the prevalence of trichotillomania and trichobezoars due to trichophagia may be due to issues related to self-selection of patients and symptom severity. Such issues may also be important in the study of impulsive-compulsive spectrum models and to their relevance to impulse control disorder

    Exotic swarming dynamics of high-dimensional swarmalators

    Full text link
    Swarmalators are oscillators that can swarm as well as sync via a dynamic balance between their spatial proximity and phase similarity. We present a generalized D-dimensional swarmalator model, which is more realistic and versatile, that captures the self-organizing behaviors of a plethora of real-world collectives. This allows for modeling complicated processes such as flocking, schooling of fish, cell sorting during embryonic development, residential segregation, and opinion dynamics in social groups. We demonstrate its versatility by capturing the manoeuvers of the school of fish and traveling waves of gene expression, both qualitatively and quantitatively, embryonic cell sorting, microrobot collectives, and various life stages of slime mold by a suitable extension of the original model to incorporate appropriate features besides a gallery of its intrinsic self-organizations for various interactions. We expect this high-dimensional model to be potentially useful in describing swarming systems in a wide range of disciplines including physics of active matter, developmental biology, sociology, and engineering

    Transcriptome profiling, physiological, and biochemical analyses provide new insights towards drought stress response in sugar maple (Acer saccharum Marshall) saplings

    Get PDF
    Sugar maple (Acer saccharum Marshall) is a temperate tree species in the northeastern parts of the United States and is economically important for its hardwood and syrup production. Sugar maple trees are highly vulnerable to changing climatic conditions, especially drought, so understanding the physiological, biochemical, and molecular responses is critical. The sugar maple saplings were subjected to drought stress for 7, 14, and 21 days and physiological data collected at 7, 14, and 21 days after stress (DAS) showed significantly reduced chlorophyll and Normalized Difference Vegetation Index with increasing drought stress time. The drought stress-induced biochemical changes revealed a higher accumulation of malondialdehyde, proline, and peroxidase activity in response to drought stress. Transcriptome analysis identified a total of 14,099 differentially expressed genes (DEGs); 328 were common among all stress periods. Among the DEGs, transcription factors (including NAC, HSF, ZFPs, GRFs, and ERF), chloroplast-related and stress-responsive genes such as peroxidases, membrane transporters, kinases, and protein detoxifiers were predominant. GO enrichment and KEGG pathway analysis revealed significantly enriched processes related to protein phosphorylation, transmembrane transport, nucleic acids, and metabolic, secondary metabolite biosynthesis pathways, circadian rhythm-plant, and carotenoid biosynthesis in response to drought stress. Time-series transcriptomic analysis revealed changes in gene regulation patterns in eight different clusters, and pathway analysis by individual clusters revealed a hub of stress-responsive pathways. In addition, qRT-PCR validation of selected DEGs revealed that the expression patterns were consistent with transcriptome analysis. The results from this study provide insights into the dynamics of physiological, biochemical, and gene responses to progressive drought stress and reveal the important stress-adaptive mechanisms of sugar maple saplings in response to drought stress

    Methanogens, sulphate and heavy metals: a complex system

    Get PDF
    Anaerobic digestion (AD) is a well-established technology used for the treatment of wastes and wastewaters with high organic content. During AD organic matter is converted stepwise to methane-containing biogasa renewable energy carrier. Methane production occurs in the last AD step and relies on methanogens, which are rather sensitive to some contaminants commonly found in wastewaters (e.g. heavy metals), or easily outcompeted by other groups of microorganisms (e.g. sulphate reducing bacteria, SRB). This review gives an overview of previous research and pilot-scale studies that shed some light on the effects of sulphate and heavy metals on methanogenesis. Despite the numerous studies on this subject, comparison is not always possible due to differences in the experimental conditions used and parameters explained. An overview of the possible benefits of methanogens and SRB co-habitation is also covered. Small amounts of sulphide produced by SRB can precipitate with metals, neutralising the negative effects of sulphide accumulation and free heavy metals on methanogenesis. Knowledge on how to untangle and balance sulphate reduction and methanogenesis is crucial to take advantage of the potential for the utilisation of biogenic sulphide as a metal detoxification agent with minimal loss in methane production in anaerobic digesters.The research was financially supported by the People Program (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013 under REA agreement 289193

    Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm

    Full text link
    In this paper a new hybrid glowworm swarm algorithm (SAGSO) for solving structural optimization problems is presented. The structure proposed to be optimized here is a simply-supported concrete I-beam defined by 20 variables. Eight different concrete mixtures are studied, varying the compressive strength grade and compacting system. The solutions are evaluated following the Spanish Code for structural concrete. The algorithm is applied to two objective functions, namely the embedded CO2 emissions and the economic cost of the structure. The ability of glowworm swarm optimization (GSO) to search in the entire solution space is combined with the local search by Simulated Annealing (SA) to obtain better results than using the GSO and SA independently. Finally, the hybrid algorithm can solve structural optimization problems applied to discrete variables. The study showed that large sections with a highly exposed surface area and the use of conventional vibrated concrete (CVC) with the lower strength grade minimize the CO2 emissionsGarcía Segura, T.; Yepes Piqueras, V.; Martí Albiñana, JV.; Alcalá González, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures. 11(7):1190-1205. doi:10.1590/S1679-78252014000700007S11901205117Alinia Ahandani, M., Vakil Baghmisheh, M. T., Badamchi Zadeh, M. A., & Ghaemi, S. (2012). Hybrid particle swarm optimization transplanted into a hyper-heuristic structure for solving examination timetabling problem. Swarm and Evolutionary Computation, 7, 21-34. doi:10.1016/j.swevo.2012.06.004Chen, S.-M., Sarosh, A., & Dong, Y.-F. (2012). Simulated annealing based artificial bee colony algorithm for global numerical optimization. Applied Mathematics and Computation, 219(8), 3575-3589. doi:10.1016/j.amc.2012.09.052Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549-556. doi:10.1007/s11367-010-0191-4Dutta, R., Ganguli, R., & Mani, V. (2011). Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Materials and Structures, 20(10), 105018. doi:10.1088/0964-1726/20/10/105018Fan, S.-K. S., & Zahara, E. (2007). A hybrid simplex search and particle swarm optimization for unconstrained optimization. European Journal of Operational Research, 181(2), 527-548. doi:10.1016/j.ejor.2006.06.034García-Segura, T., Yepes, V., & Alcalá, J. (2013). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3-12. doi:10.1007/s11367-013-0614-0Gong, Q. Q., Zhou, Y. Q., & Yang, Y. (2010). Artificial Glowworm Swarm Optimization Algorithm for Solving 0-1 Knapsack Problem. Advanced Materials Research, 143-144, 166-171. doi:10.4028/www.scientific.net/amr.143-144.166Hare, W., Nutini, J., & Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19-28. doi:10.1016/j.advengsoft.2013.03.001He, S., Prempain, E., & Wu, Q. H. (2004). An improved particle swarm optimizer for mechanical design optimization problems. Engineering Optimization, 36(5), 585-605. doi:10.1080/03052150410001704854Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687-697. doi:10.1016/j.asoc.2007.05.007Khan, K., & Sahai, A. (2012). A Glowworm Optimization Method for the Design of Web Services. International Journal of Intelligent Systems and Applications, 4(10), 89-102. doi:10.5815/ijisa.2012.10.10Kicinger, R., Arciszewski, T., & Jong, K. D. (2005). Evolutionary computation and structural design: A survey of the state-of-the-art. Computers & Structures, 83(23-24), 1943-1978. doi:10.1016/j.compstruc.2005.03.002Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Koide, R. M., França, G. von Z. de, & Luersen, M. A. (2013). An ant colony algorithm applied to lay-up optimization of laminated composite plates. Latin American Journal of Solids and Structures, 10(3), 491-504. doi:10.1590/s1679-78252013000300003Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93. doi:10.1504/ijcistudies.2009.025340Li, L. J., Huang, Z. B., & Liu, F. (2009). A heuristic particle swarm optimization method for truss structures with discrete variables. Computers & Structures, 87(7-8), 435-443. doi:10.1016/j.compstruc.2009.01.004Liao, W.-H., Kao, Y., & Li, Y.-S. (2011). A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks. Expert Systems with Applications, 38(10), 12180-12188. doi:10.1016/j.eswa.2011.03.053Luo, Q. F., & Zhang, J. L. (2011). Hybrid Artificial Glowworm Swarm Optimization Algorithm for Solving Constrained Engineering Problem. Advanced Materials Research, 204-210, 823-827. doi:10.4028/www.scientific.net/amr.204-210.823Martí, J. V., Gonzalez-Vidosa, F., Yepes, V., & Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342-352. doi:10.1016/j.engstruct.2012.09.014Martinez-Martin, F. J., Gonzalez-Vidosa, F., Hospitaler, A., & Yepes, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6), 723-740. doi:10.12989/sem.2013.45.6.723Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213)Parsopoulos, K. E., & Vrahatis, M. N. (2002). Natural Computing, 1(2/3), 235-306. doi:10.1023/a:1016568309421Paya-Zaforteza, I., Yepes, V., González-Vidosa, F., & Hospitaler, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), 693-704. doi:10.1007/s11012-010-9285-0Sarma, K. C., & Adeli, H. (1998). Cost Optimization of Concrete Structures. Journal of Structural Engineering, 124(5), 570-578. doi:10.1061/(asce)0733-9445(1998)124:5(570)Shieh, H.-L., Kuo, C.-C., & Chiang, C.-M. (2011). Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Applied Mathematics and Computation, 218(8), 4365-4383. doi:10.1016/j.amc.2011.10.012Sideris, K. K., & Anagnostopoulos, N. S. (2013). Durability of normal strength self-compacting concretes and their impact on service life of reinforced concrete structures. Construction and Building Materials, 41, 491-497. doi:10.1016/j.conbuildmat.2012.12.042Valdez, F., Melin, P., & Castillo, O. (2011). An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing, 11(2), 2625-2632. doi:10.1016/j.asoc.2010.10.010Wang, H., Sun, H., Li, C., Rahnamayan, S., & Pan, J. (2013). Diversity enhanced particle swarm optimization with neighborhood search. Information Sciences, 223, 119-135. doi:10.1016/j.ins.2012.10.012Yepes, V., Gonzalez-Vidosa, F., Alcala, J., & Villalba, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26(3), 378-386. doi:10.1061/(asce)cp.1943-5487.000014

    Probabilistic learning in immune network: Weighted tree matching model

    No full text
    Adaptive learning properties (of clonal selection and affinity maturation) in the immune network model are investigated in this paper under a nonlinear data structural representation of the involved molecules. Weighted trees are constructed to model the multiple paratopes/epitopes on the antibodies/antigens. Parallel computing experiments are carried out for the canonical coding of these trees and the corresponding multiple matching interactions. Our experiments on real data have shown significant results on the cognitive properties of the immune network. These and other computational results are presented along with a discussion of future applications

    Kalb-Ramond field induced cosmological bounce in generalized teleparallel gravity

    Full text link
    One of the important open questions in high-energy physics is to understand the lack of evidence of Kalb-Ramond (KR) field, in particular in the present day cosmology. In this paper we aim to address this issue by showing that a bounce scenario in the evolution of the Universe strongly advocates their elusiveness, even if their energy density was very large to start with. We consider the Kalb-Ramond field and its effects in the context of generalized teleparallel gravity in (3+1) dimensions. Teleparallel gravity is a description of gravitation in which the tetrads are the dynamical degrees of freedom, and the torsion arising from fields with spin are accommodated naturally as field strength tensors. In order to describe the coupling prescription, we address the correct generalization of the Fock-Ivanenko derivative operator for an n-form tensor field. By varying with respect to the tetrads, this rank-2 field is shown to source the teleparallel equivalent of Einstein's equations. We study the possibility of reproducing two well-known cosmological bounce scenarios, namely, symmetric bounce and matter bounce in four-dimensional spacetime with with the Friedmann-Lemaitre-Robertson-Walker metric and observe that the solution requires the KR field energy density to be localized near the bounce. The crucial result in our work is that this feature also naturally explains the lack of cosmological evidence of the rank-2 field in the present day Universe for the matter-bounce scenario. Thus, among the bouncing cosmologies, latter is favored over the former.Comment: 11 pages, 6 figures; Published versio
    corecore