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Abstract

We present an imitation learning approach for a dynamic fhaidring task. Our approach allows learning from
errors made by humans and how they recovered from thesa stosequently. We collect both successful and failed
human demonstrations of the task. Our algorithm combinegppat vector machine based classifier and iterative
search to generate initial task parameters for the roboxt, derefinement algorithm, capturing how demonstrators
change parameters to transition from failure to succesahles the robot to address failures. Experimental results
with a physical robot are reported to illustrate our apphoac

1 Introduction

Programming robots to execute real-world tasks is verylehging and time consuming. Approaches that rely on
search-based planners work for tasks involving manipadadf rigid objects without significant dynamics. However,

these approaches do not work well on manipulation tasksvimg deformable materials and/or fluids due to the
important role of the dynamics in task success. Howeverymautine tasks in the industry, and in our daily lives, in-

volve such complications. In addition, compliant joiatgpically found in recent robots like Baxtemake it difficult

to specify the task based on purely geometric descriptions.

Imitation learning (IL) [1], an alternative to the traditial approach, enables humans to train robots in new tasks
without being familiar with the details of robot operatidrhe IL approach is particularly suited to compliant manipu-
lation tasks as it allows the humans to provide demonstratita by directly enacting examples of how to do the task.
This is in contrast to teleoperation based or kinesthetioatestrations, typical of the Learning from Demonstration
approach, which make it cumbersome for the human to conegygkills to the robot.

Humans often need to perform challenging tasks multiplesiin order to be able to perform them at the accept-
able level of performance. Typically, under motor challeniguman performance is highly contaminated by errors
during early learning stages. In-turn, throughout mudtifplals humans use this motor error to adapt their neurat com
mand in order to learn the proper motor coordination. Prevepproaches to imitation learning in robotics area have
mainly relied on successful demonstrations ([2, 3]) witlr fesearch attempts that relied purely on failed demonstra-
tions ([4, 5]). When transferring manipulation skills, feldifferences between the robot and the human (generally
referred to as theorrespondence probleffi]) result in noisy demonstrations from the robot perspectTherefore,
we need a robust approach to imitation learning that amtiegpfailures in the transfer of skills from the human to the
robot and has built-in features to recover from it. Accogiynwe take a different approach to imitation learning: In
addition to learning from successful demonstrations, veeadso interested in learning from errors made by humans
and how they recovered from these errors in subsequerst thiethe approach described in this report, we learn simple
rules from human demonstration that capture how human dsimators change parameters to transition from failed
demonstrations to successful demonstrations. If the rialiietto do the task using the prescribed parameters from the
transition boundary, it changes parameters using theddamnes and tries again. This capability enables it to keep
trying until it succeeds.

In this report, we present our imitation learning approamhd fluid pouring task. A traditional planner would
need to integrate with a computation fluid dynamics simulaieevaluate feasible path candidates [7], which would
be computationally expensive to use in real-time. The @rpartal setup is shown in Fig. 1. The intention behind
using this task is to simulate an automated production enwilent where the robot would be required to perform a
similar task repeatedly and as fast as possible. A humardérsionstrates how to successfully perform the pouring
task. For a successful demonstration, the human must ¢igrdstermine how much, and how fast, to tilt the bottle
in order to begin the pour. Additionally, the human must ¢antly track the moving container while pouring, and
determine when to stop before the container exits the taskspace. These decisions will depend on (1) the table
rotation speed, (2) the amount of fluid that must be pouredi(8hnthe initial amount of fluid in the pouring container.
These variations of the task can make it challenging evea farman to perform.

2 Related Work

Imitation learning (IL) is a vast research area, especfaiyular in the domain of robot manipulators [8, 9, 1]. In most
IL approaches, human demonstrations are used to initialib®ot’s policy, which is then refined based on the robot’s
performance. Specific refinement approaches ranged frarforeement learning methods [10, 11, 12] to repeated
practice [13, 14] and interactive learning frameworks [16).
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Figure 1: Physical setup used to carry out the pouring tapkrmxents.

One of the crucial questions addressed in this context isth@wmpensate for suboptimal demonstration quality,
typically provided by demonstrators in real-world envinoents. The spectrum of such suboptimal demonstrations
may vary fromsuccessfulnear perfect) tdailed andflaweddemonstrations. Approaches differ in terms of which of
these demonstrations were used to learn the task at hangkdarple, incorporating only successful demonstrations
into the learning algorithm, while discarding the failechumnstrations versus learning exclusively from failurels [4
Usually, failures represent failed attempts by the humamduhe demonstration phase. However, this definition may
change based on context [5]. Approaches also differ basdwerthe success/failure information is used to guide
learning.

Initial work focused on learning from successful demortgires. Akgun et al. [2] presented keyframe-based
Learning from Demonstration, in which sequences of key tsdimthe demonstrated trajectories were extracted and
used to teach robot manipulators. However, the approacimessthat the demonstrator is providing optimal trajec-
tories. The work of Khansari, et al. [3] demonstrates a nmetthyowhich a dynamic systesproviding directions at
every point in joint/end-effector spaeean be learned from multiple demonstrations and conssr@imposed such
that the resulting system has global asymptotic stabitityard the trajectory end point. A similar approach include
the dynamic motion primitives (DMP) [17, 18] which relies arixing both linear and nonlinear systems with the
linear component responsible for ensuring stability. \Witlile original formulation used only a single demonstration
to define the DMP, recent work extended it to allow many [199wdver, these approaches still assume the human is
providing optimal demonstrations and suboptimal ones céylee rejected by averaging them with many others [20].

Learning from critique style approach avoids suboptimahdestrations and achieves generalization by using
instructor feedback as seen in [15, 16]. Rather than the hyprnaviding full demonstration trajectories, he or she
observes the robot planning and executing its own trajext@nd halts the robot motion as necessary, while providing
appropriate corrections. This enables the robot to learapgmnoximation of the hidden optimal cost function for the
task iteratively. While effective for certain tasks, théoois unable to learn from a full example trajectory prodde
by a human and instead must be restricted to local learning.

Taking inspiration from how humans learn from failed dentoatons and other people’s mistakes [21, 22], there
have been some research attempts that enabled robots tofiear failed demonstrations. Breazeal et al. [23]
presented a perspective-taking approach for learning fiftawed” demonstrations. These demonstrations do not
represent failures, and are considered to be sensible fr@edemonstrator’s perspective. However, they are ambgjuou
or flawed in terms of the training set required by the algonitb generalize well. This mainly occurs due to conflicts
between the robot’s and instructor’s perceptual beliefhefworld state. The authors developed an architecture that
allowed the robot to compare either perspectives in a comrafarence frame to identify such conflicts and use
suitable queries to clarify the ambiguities present in themdnstrations.



Figure 2: (a-e) Snapshots from a video footage of the humarodstration of the pouring task. (f-j) Snapshots from
the corresponding video showing the visual tags detectatiéiracking system.

Grollman et al. [4] developed an approach to learn only fraiftufes. Their approach uses a Donut mixture
model (DMM) framework that allows the system to explore oegi of the task execution space away from where the
demonstrator failed: In regions of high demonstrated vaga velocities generated are far away from the observed
data, and in regions of low variance, velocities generatedcbbser to human’s demonstrations. This strategy was
successful for dynamic, single-dimensional tasks but hmaiddd ability to scale into higher dimensions. Michietett
et al. [5] used an improved version of DMMs and applied it tiuf@s. The meaning of failed demonstrations in
this context was different in that they were not failed agpsrby humans during demonstrations, but the ones that
resulted in failures when the demonstrated motion was égddn the robot, caused mainly due to the differences in
the morphologies of the demonstrator and the robot.

In contrast to these works on learning from failures, ourapph allows the robot to learn from failures as well
as successful demonstrations. The notion of using bothesses and failures can be seen in few other recent works
[24, 25]. Rai et al. 2013 [24] extended the DMM approach tceliable robotic systems whose performance degraded
over time (for example, due to errors introduced from motmsumulating over time). Their framework incorporated
both successful and failure demonstrations to guide theclsgaocess that decreased the probability of selecting
among demonstrated portions that have high variance anekised the selection probability in areas of low variance.
Luo etal. [25] presented a method that used both succedesi(@®) and failure (non-preferred) demonstrationsiirthe
imitation learning approach to improve task performandgsis achieved by assigning success (preferred) staths wit
higher reward values and failure (non-preferred) statdls wer reward values in an inverse reinforcement learning
framework. The authors tested their approach in a simplelated car-driving robot control with reward features
such as car speed, lane, and distance to other cars. Whtredailure information is implicitly encoded in these
algorithms, we differ in how the success/failure inforroatis used to guide the search process by identifying the
parameters that caused different failures and figuring dwatwhanges the human made to transition to a successful
state.

Finally, a few imitation learning methods considered I&agrof the pouring task. Nemec et al. [26] applied
their IL approach to learn pouring and matchbox flip-up tasBeth successful and failure demonstrations were
used by directly encoding the degree of success into therdefuaction. For example, when the matchbox flipped
backward during the failed demonstration, the reward wagased based on how close the box came to the upright
position before flipping. The pouring task consisted of jrogiequal amounts of liquid into a container from bottles of
different volumes. Although this task is similar to the om®sen in our report, we consider a more complex scenario
where the container is moving at varying speeds rather teamgistationary. Kroemer et al. [27] developed a direct
action perception framewosrkallowing the robot to predict afforded actions of observbjkots- to learn a pouring
task from single human demonstration. However, this work feaused on object affordances and how to generalize
the pouring actions to different geometries of the pouriogtainer.



3 Overview of Approach and Contribution

In addition to learning from successful demonstrationsaveealso interested in learning from errors made by humans
and how they recovered from these errors in subsequert. talery human trial is classified as either a successful
or unsuccessful demonstration. Every unsuccessful demadios is scored using a penalty score. We define a finite-
dimensional parameter space to capture the essentiatdsaifithe demonstrations. We can compute the transition
boundary between successful and unsuccessful demoosgating a support vector machine (SVM) classifier. This
boundary represents non-dominated successful demaosgatTheoretically, a point on this boundary prescribes
parameters to be used by the robot to successfully carnheuask.

However, in practice using a point on the transition boupdtres not always mean success for the robot be-
cause of the following two reasons. First, the transitionrmtary is constructed using a limited number of human
demonstrations, and the parameters defining the space méyllpa@haracterize the demonstrations’ performances.
So the constructed boundary is an approximation of the bbtuadary. Second, differences in robot and human
morphologies result in subtle differences between thdwabmrs as they try to execute a task with the same set of
parameters. So when a robot tries to execute a task baseeé pretcribed parameters of the transition boundary, it
may not completely succeed.

In our approach, we learn rules from the demonstrationscyature how the humans change parameters to transi-
tion from failed to successful trials. If the robot fails to the task using the prescribed parameters from the transiti
boundary, it changes parameters using the learned rulesias@gain. This capability enables it to keep trying until
it succeeds. In summary, our approach gives the robot amig set of initial parameters to try and carry out the
task. It also gives the robot rules that describe how to cadng parameters if the initial set of suggested parameters
does not work. Therefore, the main contribution of the wark initial investigation into how learning can be done
to simultaneously take advantage of failures and succesamsalgorithms are proposed to leverage this knowledge.

4 Pouring Task

Task configuration is defined by three parameters: (1) Tag@t amounp (We assume tolerance &f € around this
nominal value), (2) moving container speednd (3) amount of fluid in the pouring contairfer

The goal is to complete this task in the small time window wtiencontainer is reachable without spilling the
liquid. The task is successfully completed if (1) the amgumiired in the container is between+ € andp — ¢
and (2) no fluid is spilled. If the task cannot be successftdiypleted, then we assign a penalty score. The penalty
score is the amount of fluid that is outside of the toleranogeaBased on our initial exploration, the following four
parameters need to be selected to carry out the task:

1. Container Tilt Anglex. This represents the amount the pouring container is liyitited to start the pouring.

2. Container Tilt Angle Speed. This represents the average speed used in tilting theioentaom the upright
position to the final position.

3. Post Tilting Timetp. This represents the time from the tilting completion tktesmpletion.

4. Final Tilt Anglea;. This represents the final tilt angle of the pouring conta&téask completion.

4.1 Generating Initial Task Parameters

Let D be the set of demonstrations performed by the human. Eacbr#mationd € D is represented as a triple
(s,9,A), wheresis the stateg is the outcome (e.g., success, or failure), Anslthe score (e.g., merit score for success
and penalty score for failure). LB be the set of success demonstrations@hthe the set of failure demonstrations.
State is represented gs, ¢, f, a, w,tp, at).

4.1.1 Human Demonstrations

A set of 190 human demonstrations of the pouring task wasrgtate Out of these, 4 outliers and 16 invalid trials
were removed. Accordingly, the demonstrationBdtad 170 demonstrations. This data was generated by obgervin
four different demonstrators. Snapshots from a video dingrof a sample human demonstration are shown in Figs.
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Figure 3: (a) The demonstration trajectory extracted frbemideo shown in terms of the tilt angle of the bottle as a
function of time. (b) Plot of final tilt anglers as a function of pour error. A loose correlation can be sedwdsn

the parameter value and the trial performance. (c) Intatsi function giving the relative necessary change of the
parametet, as a function of the penalty score.

2(a)-2(e). Each demonstration was classified as either @ss®r a failure. Out of 170 demonstrations, 93 were
classified as ‘success’ and 77 were classified as ‘failurpprpriate score was assigned to each demonstration.

4.1.2 Parameter Extraction

Variablesp, v, andf were set for each demonstration. Variabdgsw, tp, andas were extracted automatically from
video recordings of human demonstrations. Multiple visagb are attached to both the pouring bottle and the table,
which are tracked by a vision system. The tag informationtives used to calculate the angle that the bottle deviated
from vertical. Other rotational information was ignorechi§was done for each frame, generating a trajectory of the
bottle’s tilt over time. This trajectory was then numerlgalifferentiated and smoothed by averaging nearby samples
to provide an angular velocity trajectory as well. An exaengl both trajectories can be seen in Fig. 3(a).

To extract the pour task parameters, the trajectory wasl@ivinto four segments: (1) the approach to begin
pouring, (2) the tilting phase, (3) the steady-state pa@uphase, and (4) everything after pouring was finished. The
segments were determined by thresholds on the trajectatty,tilting starting after the angle exceeds 45 degrees
(@nre9), tilting ending when the angular velocity drops below 3@/deand pouring ending when the angular velocity
rises above 30 deg/s to return back to vertical. These se@gments can be seen, identified by color, on the previous
figure. The initial tilt angle was then specified as the avermafg3 samples after tilting ended. The tilt speed was the
average of velocity samples during the tilt phase. The poug tvas the duration of the pouring phase, and the final
angle was the average of 3 samples prior to the pour endingll tases, multiple samples were taken to reduce the
likelihood of noise in a single sample affecting the paramealue. Finally, the table speed was also directly measure
by the tracking system.

4.1.3 Training a SVM Classifier

We begin by training a SVM classifier @ The SVM parameters and specific kernel function were ssdday taking
the best classification performance using 10-fold crodislation. This resulted in use of the polynomial degree 2
kernel, with a cross-validation accuracy of 70.7%. Notd e can never expect full classification accuracy due to
the reduction of the continuous demonstration to a smabifsgarameters.

4.1.4 lterative Search

Given a new task configuratiopyy, f), the goal is to compute task parameters w" ,t;, anda;. We generate many
states by holdingy, v, f) constant and varying, w, t, , anda;. Currently we use 10 levels for each parameter. These
lead to 10000 candidate states Each of the these initial states is classified as either eesgoor a failure using the



classifier trained usin®. We delete states that are classified failure frofn Let S represent the set of remaining
candidate states. Now, we compute the closest distancetiffistates irf8 to success-states B. We used weighted
Euclidean distance between state pairs as the distanceime&sgure 3(b) shows a graph of values of parameter

for success (green colored) and failure (red colored) paista function of error in pour amounts. The difference
between average values of success cases and over-potg fadkes (and success and under-pour failure cases) can
be used to set the weight for that parameter.d.&t S and lets be a success-state Ithat is closest te. We do
iterative search on the line joinirgands’ to find a success-stag that is closest tas. Any point on the linesg is

given by:

_p_ _p_
v v
f f
g
aly) = yl|a®|+(1-y) |@ 1)
w® w®
ts ts
p
a7 ] _ap?'_

wherey € [0,1]. Accordingly, the search is performed by varyingnd using the classifier to check the status of states
being generated during the search. From (1), note thatblasgq, v, andf remain constant for any value gf This
step is performed for all states $ and the resulting such closest success-states are cdliadfee setS’. Finally,

we selecs’ € S’ that has the closest neighborih This state is used to compute task parametérsw®,t; anday.

Algorithm 1 Algorithm to generate initial task parameters
1: Input: S={s:s=(p,v f,a,w,tp,ar)},
Human demonstrations:
D = {(s1,91,1),(82,92,42),- -, (Sn,Gn, An)}, n = [D|
s €S g € {0,1} (O: failure, 1: success),
D°={(s,g,A) g =1}, D" =D—-D*;

2: kernel«+ InitializeKernel kerneLnamekernel parameters;
3: svmStruck— svmTrair{D, kernel);
4: Initialize new task configuratiotp,v, f) < (po, Vo, fo);
5. .7 + GenerateCandidateStat@s w,tp, at);
6: fori=1:||do
7: g < svmClassifgsvmStruct s € .)
8: if (gi==1)then
9: § < argmirj|s —dj][;
djeDs
10: y=0;
11: while (y <= 1) do
12: s” < q(y); % From (1)
13: 0" + svmClassifgsvmStructs”)
14: if (g" ==1) then
15: ClosestDistanog”) < ||s” — 5||;
16: break;
17: end if
18: y< y+0;%0 << 1isavery small positive increment.
19: end while
20:  endif
21: end for

22: return s + argmin{ClosestDistandg”)};
e

4.2 Refining Initial Task Parameters

The robot executes the task using the parametérsv®, t;, andas. Lets' be the state associated with this task
execution. If the task is successful, then we stop. If th& issot successful, then these initial parameters need
adjustment. For every unsuccessful demonstratioD,iwe ask the demonstrators as to what parameters they will
change to improve performance. This is recorded for evesucressful demonstration. Letbe the parameter



identified by the human with an unsuccessful demonstratiowe perform line search on this parameter using the
learnt SVM classifier to identify the minimum change in th&ueeof the parameter to transition from failure to success.
Let ox be the normalized value of target parameter change defined as

N = = @)

wherex' is the value of the parameter in the failed demonstratiom elery parameter, identified by demonstra-
tors, that can be varied to improve the outcome, we develdptarpolation function that expresses the normalized
value of the target parameter change as a function of thdtgestare. The rationale is based on our expectation that
a large change in parameter value to transition to succéiss jfenalty score associated with the failed task is high.
We find the closest failed demonstratidre D to s*. We use the parameter identified by the demonstratdrfior
performing the change. We use the penalty s@orassociated witls* as an input to the normalized interpolation
function to compute the change in the parameter. The rolestagain using the new parameter value. Currently, we
stop after one round of parameter adjustment. In future steip will be repeated until the robot succeeds.

Algorithm 2 Algorithm to refine initial task parameters
1 Input: §* = (p*,v*, f*, 0%, w" t5,af),
svmStruct (Trained SVM classifier from Algorithm 1),
D' ={(s,g.A) : g =0},
human identified parameters for each failed state
X={x:%€{a,wtpat},i=12..., D}

2: DI —{(s(%),0,A)) : xi (e X) =a};
3 Dé — {(s(%),0,A) : xi (€ X) = w};
4: DS {(s(x),0,A1) 1% (€ X) =tp};
5: D} « {(s(x),0,A1) 1 xi(€ X) = ar}
6: fori=1:4do
7. ni«|Df|
8: forj=1:ndo
9: while (1) do
10: X 4= LinearSearcb(ifj )
11: gj < svmClassifgsvmStructs(x));
12: if (9j ==1) then
_ x—xif‘
13: OXij — —+;
14: break;
15: end if
16: end while
17:  end for
18: interp(i) < polyfit ({()\1176%]) j=12,... 7ni})
19: end for

20: d + argmir|s* —d||;
deDf

21 i+ arg(Dif tde Dif); % Index of failure subset that contaids
[

22: return X « X [1+ polyval(interp(i),A*)];

4.3 Experimental Results

Implementation of our approach was conducted with a Baxteotrand a Labvolt Model 5150 robot. In this report,
we present the results using the Labvolt robot (Experimeitts the Baxter robot are currently in progress).For the
pouring task, the position and speed of the table was medasiieg the same tracking system used for demonstrations.
The arm trajectory was specified simply by solving the inediisematics to keep the opening of the bottle above the
target container. Due to constraints in the robot’s abasitithe pouring phase of the trajectory was required to be
discretized into two segments of minimum 1.5 seconds ealstthwvas still sufficient to vary the pour time and keep
the bottle above the target. The overall tilt of the bottleswmat affected by the limits of the robot and the tilt profile
was fully defined by the task parameters.



Figure 4: Snapshots from a video footage of the robot usiegatfjusted parameters to successfully perform the
pouring task

We wanted to generate parameters for the following task gordtion: p = 300 grams and = 0.34 rad/s. We
keptf (= 400 grams) fixed in all experiments). Using Algorithm 1dhen the approach described in Section 4.1, we
computed the following task parametees: = 1.4 rad,w" = 1.28 rad/st; = 4.1 s, anda; = 1.75 rad.

Task execution with these parameters led to over-pour ofg325or the closest data point in the failed demon-
stration set, the human had selected pour tigrees the parameter to improve. Algorithm 2 giving the relatiiange
of the parametet, as a function of the penalty score is shown in Fig. 3(c). Nb& even with the noisy data, a
physically realistic fit is achieved, with an over-pour lgagtoward a less pronounced pouring angle. It is also passes
close to the origin, providing some qualitative stabiligsarance that small errors do not lead to large adjustments.
Then using, and the implied penalty score of +25, the derived interpmtafunction provided a relative parameter
adjustment of -0.172. This provided a new pour time of 3.3%8ds. Execution of this updated set of parameters
proved successful and the refinement process was halted.

5 Conclusions

We presented an imitation learning approach that allowstsoto learn from how humans recover from failed attempts
to perform dynamic manipulation tasks. Our algorithm allovthe robot to perform the task under variations without
a complicated planning system. Experimental results stidhat this approach was able to succeed at the dynamic
pouring task. Future work will focus on systematic empir®aaluation with the Baxter robot and a better tracking
system.
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