25 research outputs found

    Fibronectin and androgen receptor expression data in prostate cancer obtained from a RNA-sequencing bioinformatics analysis

    Full text link
    Prostate cancer is the second most commonly diagnosed male cancer in the world. The molecular mechanisms underlying its development and progression are still unclear. Here we show analysis of a prostate cancer RNA-sequencing dataset that was originally generated by Ren et al. [3] from the prostate tumor and adjacent normal tissues of 14 patients. The data presented here was analyzed using our RNA-sequencing bioinformatics analysis pipeline implemented on the bioinformatics web platform, Galaxy. The relative expression of fibronectin (FN1) and the androgen receptor (AR) were calculated in fragments per kilobase of transcript per million mapped reads, and represented in FPKM unit. A subanalysis is also shown for data from three patients, that includes the relative expression of FN1 and AR and their fold change. For interpretation and discussion, please refer to the article, “miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin” [1] by Das et al

    Infection and genotype remodel the entire soybean transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High throughput methods, such as high density oligonucleotide microarray measurements of mRNA levels, are popular and critical to genome scale analysis and systems biology. However understanding the results of these analyses and in particular understanding the very wide range of levels of transcriptional changes observed is still a significant challenge. Many researchers still use an arbitrary cut off such as two-fold in order to identify changes that may be biologically significant. We have used a very large-scale microarray experiment involving 72 biological replicates to analyze the response of soybean plants to infection by the pathogen <it>Phytophthora sojae </it>and to analyze transcriptional modulation as a result of genotypic variation.</p> <p>Results</p> <p>With the unprecedented level of statistical sensitivity provided by the high degree of replication, we show unambiguously that almost the entire plant genome (97 to 99% of all detectable genes) undergoes transcriptional modulation in response to infection and genetic variation. The majority of the transcriptional differences are less than two-fold in magnitude. We show that low amplitude modulation of gene expression (less than two-fold changes) is highly statistically significant and consistent across biological replicates, even for modulations of less than 20%. Our results are consistent through two different normalization methods and two different statistical analysis procedures.</p> <p>Conclusion</p> <p>Our findings demonstrate that the entire plant genome undergoes transcriptional modulation in response to infection and genetic variation. The pervasive low-magnitude remodeling of the transcriptome may be an integral component of physiological adaptation in soybean, and in all eukaryotes.</p

    Next-generation sequencing: A challenge to meet the increasing demand for training workshops in Australia

    Get PDF
    The widespread adoption of high-throughput next-generation sequencing (NGS) technology among the Australian life science research community is highlighting an urgent need to up-skill biologists in tools required for handling and analysing their NGS data. There is currently a shortage of cutting-edge bioinformatics training courses in Australia as a consequence of a scarcity of skilled trainers with time and funding to develop and deliver training courses. To address this, a consortium of Australian research organizations, including Bioplatforms Australia, the Commonwealth Scientific and Industrial Research Organisation and the Australian Bioinformatics Network, have been collaborating with EMBL-EBI training team. A group of Australian bioinformaticians attended the train-the-trainer workshop to improve training skills in developing and delivering bioinformatics workshop curriculum. A 2-day NGS workshop was jointly developed to provide hands-on knowledge and understanding of typical NGS data analysis workflows. The road show–style workshop was successfully delivered at five geographically distant venues in Australia using the newly established Australian NeCTAR Research Cloud. We highlight the challenges we had to overcome at different stages from design to delivery, including the establishment of an Australian bioinformatics training network and the computing infrastructure and resource development. A virtual machine image, workshop materials and scripts for configuring a machine with workshop contents have all been made available under a Creative Commons Attribution 3.0 Unported License. This means participants continue to have convenient access to an environment they had become familiar and bioinformatics trainers are able to access and reuse these resources.Nathan S.Watson-Haigh, Catherine A. Shang, Matthias Haimel, Myrto Kostadima, Remco Loos, Nandan Deshpande, Konsta Duesing, Xi Li, Annette McGrath, Sean McWilliam, Simon Michnowicz, Paula Moolhuijzen, Steve Quenette, Jerico Nico De Leon Revote, SonikaTyagi and Maria V. Schneide

    Auditing and Maintaining Provenance in Software Packages

    No full text

    Cloud Computing for 3D Protein Structure Alignment

    No full text
    corecore