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Abstract Computational methods for protein structure
prediction allow us to determine a three-dimensional
structure of a protein based on its pure amino acid
sequence. These methods are a very important alter-
native to costly and slow experimental methods, like
X-ray crystallography or Nuclear Magnetic Reso-
nance. However, conventional calculations of protein
structure are time-consuming and require ample com-
putational resources, especially when carried out with
the use of ab initio methods that rely on physical
forces and interactions between atoms in a protein.
Fortunately, at the present stage of the development of
computer science, such huge computational resources
are available from public cloud providers on a pay-
as-you-go basis. We have designed and developed a
scalable and extensible system, called Cloud4PSP,
which enables predictions of 3D protein structures
in the Microsoft Azure commercial cloud. The sys-
tem makes use of the Warecki-Znamirowski method
as a sample procedure for protein structure predic-
tion, and this prediction method was used to test the
scalability of the system. The results of the efficiency
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tests performed proved good acceleration of predic-
tions when scaling the system vertically and horizon-
tally. In the paper, we show the system architecture
that allowed us to achieve such good results, the
Cloud4PSP processing model, and the results of the
scalability tests. At the end of the paper, we try to
answer which of the scaling techniques, scaling out
or scaling up, is better for solving such computational
problems with the use of Cloud computing.
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structure - Protein structure prediction - Tertiary
structure prediction - Ab initio - Protein structure
modeling - Cloud computing - Distributed
computing - Scalability - Microsoft Azure

1 Introduction

Protein structure prediction is one of the most impor-
tant and yet difficult processes for modern computa-
tional biology and structural bioinformatics [21]. The
practical role of protein structure prediction is becom-
ing even more important in the face of the dynami-
cally growing number of protein sequences obtained
through the translation of DNA sequences coming
from large-scale sequencing projects. Needless to say,
experimental methods for the determination of protein
structures, such as X-ray crystallography or Nuclear
Magnetic Resonance (NMR), are lagging behind the
number of protein sequences. As a consequence, the
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number of protein structures in repositories, such
as the world-wide Protein Data Bank (PDB) [3], is
only a small percentage of the number of all known
sequences. Therefore, computational procedures that
allow for the determination of a protein structure
from its amino acid sequence are great alternatives for
experimental methods for protein structure determina-
tion, like X-ray crystallography and NMR.

Protein structure prediction refers to the compu-
tational procedure that delivers a three-dimensional
structure of a protein based on its amino acid sequence
(Fig. 1). There are various approaches to the prob-
lem and many algorithms have been developed. These
methods generally fall into two groups: (1) physical
and (2) comparative [35, 72]. Physical methods rely
on physical forces and interactions between atoms in
a protein. Most of them try to reproduce nature’s algo-
rithm and implement it as a computational procedure
in order to give proteins their unique 3D native confor-
mations [43]. Following the rules of thermodynamics,
it is assumed that the native conformation of a pro-
tein is the one that possesses the minimum potential
energy. Therefore, physical methods try to find the
global minimum of the potential energy function [41].
The functional form of the energy is described by
empirical force fields [10] that define the mathemat-
ical function of the potential energy, its components
describing various interactions between atoms, and
the parameters needed for computations of each of
the components (see Section 2.1 for details). The
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Fig. 1 3D protein structure prediction: from amino acid
sequence (Input) to 3D structure (Output). Modeling software
uses different methods for prediction purposes: 1 physical, 2
comparative
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potential energy of an atomic system is composed
of several components depending on the force field
type. Methods that rely on such a physical approach
belong to so-called ab initio protein structure predic-
tion methods. Representatives of the approach include
I-TASSER [68], Rosetta@home [42], Quark [69], and
many others, e.g. [66] and [73]. In the paper, we will
focus on this approach.

On the other hand, comparative methods rely on
already known structures that are deposited in macro-
molecular data repositories, such as the Protein Data
Bank (PDB). Comparative methods try to predict the
structure of the target protein by finding homologs
among sequences of proteins of already determined
structures and by “dressing” the target sequence in one
of the known structures. Comparative methods can
be split into several groups including: (1) homology
modeling methods, e.g. Swiss-Model [2], Modeller
[14], RaptorX [32], Robetta [36], HHpred [63], (2)
fold recognition methods, like Phyre [34], Raptor [70],
and Sparks-X [71], and (3) secondary structure predic-
tion methods, e.g. PREDATOR [18], GOR [19], and
PredictProtein [56].

Both physical and comparative approaches are still
being developed and their effectiveness is assessed
every two years in the CASP experiment (Criti-
cal Assessment of protein Structure Prediction). It
must also be admitted that ab initio prediction meth-
ods require significant computational resources, either
powerful supercomputers [53, 60] or distributed com-
puting. The proof of the latter give projects such
as Folding@home [62] and Rosetta@Home [9] that
make use of Grid computing architecture.

A promising alternative seems also to be provided
by Cloud computing, which allows hardware infras-
tructure to be leased in the pay-as-you-go model.
Cloud computing is a model for enabling convenient,
on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management
effort or service provider interaction [47]. In practice,
Cloud computing allows applications and services to
be run on a distributed network using a virtualized sys-
tem and its resources, and at the same time, allows to
abstract away from the implementation details of the
system itself. Cloud computing emerged as a result
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of requirements for the public availability of comput-
ing power, new technologies for data processing and
the need for their global standardization, becoming
a mechanism allowing control of the development of
hardware and software resources by introducing the
idea of virtualization. The use of cloud platforms can
be particularly beneficial for companies and institu-
tions that need to quickly gain access to a computer
system which has a higher than average computing
power. In this case, the use of Cloud computing ser-
vices can be faster in implementation than using the
owned resources (servers and computing clusters) or
buying new ones. For this reason, Cloud computing
is widely used in business and, according to Forbes,
the market value of such services will significantly
increase in the coming years [46].

1.1 Related Works

Cloud computing evolved from various forms of dis-
tributed computing, including Grid computing. Both,
Clouds and Grids provide plenty of computational
and storage resources, which is very attractive for
scientific computations performed in the domain of
Life sciences. Therefore, both computing models
became popular in scientific applications for which
a large pool of computational resources allows vari-
ous computationally intensive problems to be solved.
In the domain of Life sciences there are many ded-
icated cloud-based and grid-based tools that allow
us to solve problems, such as whole genome and
metagenome sequence analysis [1], gene detection
[45], identification of peptide sequences from spec-
tra in mass spectrometry [44], analysis of data from
DNA microarray experiments [33], mapping next-
generation sequence data to the human genome and
other reference genomes, for use in a variety of bio-
logical analyses including SNP discovery, genotyp-
ing and personal genomics [13, 57], gene sequence
analysis and protein characterization [28], 3D ligand
binding site comparison and similarity searching of
a structural proteome [24], molecular docking [4, 8],
protein structure similarity searching and structural
alignment [25, 50-52], and many others.

In the domain of protein structure prediction, it
is worth noting two cloud-based solutions. The first
one is an open-source Cloud BioLinux [38], which

is a publicly accessible Virtual Machine (VM) that
enables scientists to quickly provision on-demand
infrastructures for high-performance bioinformatics
computing using cloud platforms. Cloud BioLinux
provides a range of pre-configured command line
and graphical software applications, including a full-
featured desktop interface, documentation and over
135 bioinformatics packages for applications includ-
ing sequence alignment, clustering, assembly, display,
editing, and phylogeny. The release of the Cloud
BioLinux reported in [31] consists of the already
mentioned PredictProtein suite that includes methods
for the prediction of secondary structure and sol-
vent accessibility (profphd), nuclear localization sig-
nals (predictnls), and intrinsically disordered regions
(norsnet).

The second solution is Rosetta@Cloud [27].
Rosetta@Cloud is a commercial, cloud-based pay-
as-you-go server for predicting protein 3D struc-
tures using ab initio methods. Services provided by
Rosetta@Cloud are analogous to the well-established
Rosetta computational software suite, with a variety of
tools developed for macromolecular modeling, struc-
ture prediction and functional design. Rosetta@Cloud
was originally designed to work on the Cloud provided
by Amazon Web Service (AWS). It delivers a scalable
environment, fully functional graphical user interface
and a dedicated pricing model for using computing
units (AWS Instances) in the prediction process.

Great progress in scaling molecular simulations has
also been brought by scientific initiatives that make
use of the Grid computing architecture. Lagana et
al. [39] presented the foundations and structures of
the building blocks of the ab initio Grid Empowered
Molecular Simulator (GEMS) implemented on the
EGEE computing Grid. In GEMS the computational
problem is split into a sequence of three computa-
tional blocks, namely INTERACTION, DYNAMICS,
and OBSERVABLES. Each of the blocks has different
purpose. Ab initio calculations determining the struc-
ture of a molecular system are performed in the first
block. The main efforts to implement GEMS on the
EGEE Grid were made to the second block, which is
responsible for the calculation of the dynamics of the
molecular system. The authors show that for various
reasons the parallelization of molecular simulations is
possible through the application of a simple parame-
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ter sweeping distribution scheme, which is also used
in our system.

WeNMR [67] is an example of a successful ini-
tiative for moving the analysis of Nuclear Magnetic
Resonance (NMR) and Small Angle X-Ray scattering
(SAXS) imaging data for atomic and near-atomic res-
olution molecular structures to the Grid. The WeNMR
makes use of an operational Grid that was initially
based on the glite middleware, developed in the
context of the EGEE project series [16]. Although,
WeNMR focuses on NMR and SAXS, its web por-
tal provides access to various services and tools,
including those used for the prediction of biological
complexes (HADDOCK [11]), calculating structures
from NMR data (Xplor-NIH [58], CYANA [22] and
CS-ROSETTA [61]), molecular structure refinement
and molecular dynamics simulations (AMBER [6] and
GROMACS [65]). A typical workflow is based on
Grid job pooling. A specialized process is listening
for Grid job packages that should be executed in the
Grid, another process is periodically checking running
jobs for their status, retrieving the results when ready,
and finally, another process performs post-processing
of results before they are presented to the user. In the
paper, we will present the system that uses a sim-
ilar workflow scheme, with prediction jobs that are
divided into many prediction tasks. These tasks are
enqueued in the system for further execution by pro-
cessing units that work in a dedicated role-based and
queue-based architecture that we designed.

Gesing et al. [20] report on a very important secu-
rity issue while carrying out computations in struc-
tural bioinformatics, molecular modeling, and quan-
tum chemistry with the use of Molecular Simulation
Grid (MoSGrid). MoSGrid is a science gateway that
makes use of WS-PGRADE [15] as a user interface,
gUSE [30] as a high-level middleware service layer
for workload storage, workload execution, monitor-
ing and others, UNICORE [64] as a Grid resources
middleware layer, and XtreemeFS [26] as a file sys-
tem for storage purposes. Various security elements
are employed in particular layers of the MoSGrid
security infrastructure with the aim of protecting intel-
lectual property of companies performing scientific
calculations.

These projects prove that computations per-
formed in bioinformatics require ample computational
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resources that are available through the use of Grid
or Cloud computing. In the paper, we present a newly
developed Cloud4PSP (Cloud for Protein Structure
Prediction) system. Cloud4PSP is a cloud-based com-
putational framework for 3D protein structure predic-
tion. Cloud4PSP was designed and developed for the
Microsoft Azure commercial Cloud. In the paper, we
show the architecture of the Cloud4PSP, its unique
features, and the advantages of using the queue-based
architecture instead of direct communication. We also
present the processing model used by the system for
those who would like to extend the system with new
prediction methods. Finally, we show the scalabil-
ity of the system based on the designed architecture
on the example of sample prediction processes per-
formed with the use of the ab initio prediction method
designed by S. Warecki and L. Znamirowski [66].

The paper presents this system, which comple-
ments the collection of available Cloud-based and
Grid-based tools by:

— sharing a dedicated architecture of a Cloud-based,
scalable and extensible system focused on protein
structure prediction, oriented to the specificity of
the process,

— showing the benefits of building the system with
the use of roles and queues,

— providing a processing model that involves the
creation of prediction jobs with accompanying
collections of prediction tasks,

— delivering a ready-to-deploy Azure solution,
whose good scalability in the Azure cloud was
proved by a series of tests.

1.2 Microsoft Azure

Microsoft Azure is a commercial cloud platform
that delivers services for building scalable web-based
applications. Microsoft Azure allows the develop-
ment, deployment and management of applications
and services through a network of data centers located
in various countries throughout the world. Microsoft
Azure is a public Cloud, which means that the infras-
tructure of the Cloud is available for public use and is
owned by Microsoft selling cloud services. Microsoft
Azure provides computing resources in a virtualized
form, including processing power, RAM, space and
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appropriate bandwidth for transferring data over the
network, within the Infrastructure as a Service (IaaS)
service model [47]. Moreover, within the Platform
as a Service model [47], Azure also delivers a plat-
form and dedicated cloud service programming model
for developing applications that should work on the

Cloud.
In Fig. 2 we can see types of services and

resources provided to a developer of the application
deployed to Microsoft Azure cloud. Below we briefly
describe the Microsoft Azure cloud resources used
in our project:

— Compute: Compute/Cloud Services represent
applications that are designed to run on the Cloud
and XML configuration files that define how the
cloud service should run. The Microsoft Azure
programming model provides an abstraction for
building cloud applications. Each cloud appli-
cation is defined in terms of component roles
that implement the logic of the application. Con-
figuration files define the roles and resources
for an application. There are two types of roles
that can be used to implement the logic of the
application:

Fig. 2 Application
deployed to Microsoft
Azure cloud, which serves
as a virtualized
infrastructure, platform for
developers, and gateway for
hosting applications

— Web role - is a virtual machine (VM)
instance used for providing a web based
front-end for the cloud service;

—  Worker role - is a virtual machine (VM)
instance used for generalized develop-
ment that performs background process-
ing and scalable computations, accepts
and responds to requests, and performs
long-running or intermittent tasks.

Storage: Microsoft Azure also provides a rich
set of data services for various storage scenarios.
These data services enable storage, modification
and reporting on data in Microsoft Azure. The
following components of Data Services can be
used to store data: BLOBs that allow the stor-
age of unstructured text or binary data (video,
audio and images), Tables that can store large
amounts of unstructured non-relational (NoSQL)
data, and the Azure SQL Database for storing
large amounts of relational data, and HDInsight,
which is a distribution of Apache Hadoop, based
on the Hortonworks Data Platform.

Messaging: Messaging mechanisms allow for
effective communication between components

user

Application

| Compute | | Data servicesl | Networking | | App Servicesl

Fabric
(virtualization layer)

virtual ]
machines|

BULL UL
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and processes running in the whole cloud service.
Queues are a general-purpose technology that can
be used for messaging in a wide variety of sce-
narios, including: communication between web
and worker roles in multi-tier Azure applications
(as in our project), communication between on-
premises applications and Azure-hosted applica-
tions in hybrid solutions, communication between
components of distributed applications running
on-premises in different organizations or depart-
ments of an organization. Microsoft Azure pro-
vides two types of queue mechanisms: Azure
Queues and Service Bus Queues. Azure Queues,
which are part of the Azure Storage infrastruc-
ture, enable reliable, persistent messaging within
and between services. Service Bus queues are part
of a broader Azure messaging infrastructure that
supports queuing as well as other communication
patterns.

— Fabric - the entire compute, storage (e.g. hard
drives), and network infrastructure, usually imple-
mented as virtualized clusters, constitutes a
resource pool that consists of one or more servers
(called scale units).

The basic tier of the Microsoft Azure platform
allows us to create five classes of virtual machines
with different parameters and computational power
(number of cores, CPU/core speed, amount of mem-
ory, efficiency of I/O channel). Table 1 shows a list of
features for available computing units.

Microsoft Azure is a commercial Cloud. Costs
associated with the use of the Azure platform depend
on the number of resources used (including compute

units, storage, network traffic and bandwidth), the
time by which these resources are used, the number of
deployed applications, and the usage of other services
that are enabled (e.g., HDInsight, Stream Analytics,
Active Directory). The most popular and flexible pay-
ment plan is based on pay-as-you-go subscriptions.

2 Methods

Cloud4PSP is an extensible service that allows for ab
initio prediction of protein structures from amino acid
sequences. It was intentionally designed to work in the
Azure cloud. At the moment, Cloud4PSP uses only the
Warecki-Znamirowski (WZ) method [66] as a sample
procedure for protein structure prediction. However,
the collection of prediction methods can be extended
by using available programming interfaces. The infor-
mation on possible extensions will be provided in
Section 2.4.

In terms of efficiency, the mentioned WZ method
is slower than popular optimization methods like
gradient-based steepest descent [7], Newton-Raphson
[12], Fletcher-Powell [17], or Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [59]. However, it finds a
global minimum of the potential energy with higher
probability and has a lower tendency to converge on
and get stuck in the nearest local minimum, which
is not necessarily the global minimum of the energy
function [66]. The method is based on the modi-
fied Monte Carlo approach, which is a better solu-
tion. In the section, we give details of the prediction
method, architecture and processing model used by
Cloud4PSP, and details of how the system is scaled in

Table 1 Available sizes of

Microsoft Azure virtual VM/server Number of CPU core Memory Disk space Cost

machines (VMs) for Web type CPU cores speed (GHz) (GB) (GB) ($)/hr

and Worker role instances

[48] ExtraSmall Shared core 1.0 0.768 19 0.02
Small 1 1.6 1.75 224 0.08
Medium 2 1.6 35 489 0.16
Large 4 1.6 7 999 0.32
ExtralLarge 8 1.6 14 2039 0.64
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order to handle a growing amount of work related to
the prediction process.

2.1 Prediction Method

The Warecki-Znamirowski (WZ) method for protein
structure prediction models a protein backbone by (1)
sampling numerous protein conformations determined
by a series of ¢ and i torsion angles of the protein
backbone (Fig. 3), and (2) finding the conformation
with the lowest potential energy, which minimizes the
expression:

E(¢o, Yo, d1, Y1, ooor Pu—1, ¥n—-1), (1)

min
0,%0,1. %1, Pn—1,Vn—1
where: E is a function describing the potential
energy of the current conformation, n is the number

Fig. 3 Overview of protein construction. Visible atoms form-
ing the main chain of the polypeptide. Side chains are marked
as Rg, Ry, Ry

of amino acids in the predicted protein structure, and
#i, W, are torsion angles of the i’ amino acid.

The basic assumption of the method is that the pep-
tide bond is planar (see Fig. 3), which restricts the
rotation around the C’ — N bond, and the w angle
is essentially fixed to 180 degrees due to the partial
double-bond character of the peptide bond. Therefore,
the main changes of the protein conformation are pos-
sible by chain rotations around the ¢ and i angles,
and these angles provide the flexibility required for
folding the protein backbone.

The following potential energy function E is used
in the calculations of energy for the current conforma-
tion (configuration AN of N atoms, determined by a
series of ¢ and ' torsion angles in (1)):

N bonds k? - angles k? oo
E@AY) = ) oy —d)? + > -6, =6))
j=1 j=1
torsions

+ ; %(l—i—cos(pa)—y))

23 (| () - (2)])

al al qkqj
Ty ®
k=1 jek+1 Ameorkj

where: the first term represents the bond stretching
component energy and: k? is a bond stretching force
constant, d; is the distance between two atoms (real
bond length), d}) is the optimal bond length; the second
term represents the angle bending component energy
and: k;f is a bending force constant, 6; is the actual

value of the valence angle, 9? is the optimal valence
angle; the third term represents torsional angle compo-
nent energy and: V denotes the height of the torsional
barrier, p is the periodicity, w is the torsion angle, y
is a phase factor; the fourth term represents van der
Waals component energy described by the Lennard-
Jennes potential and: r; denotes the distance between
atoms k and j, oy; is the collision diameter, gg; is
the well depth, and N is the number of atoms in the
structure AV the fifth term represents electrostatic
component energy and: gy, g; are atomic charges, ry;
denotes the distance between atoms k and j, &g is a
dielectric constant, and N is the number of atoms in
the structure AN,
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The Warecki-Znamirowski (WZ) algorithm mini-
mizes the expression (2) for current values of variables
defining degrees of freedom, referential values of the
variables taken from force field parameter sets [37],
and imposing constraints on torsion angles ¢ and
resulting from Ramachandran plots [55]. These con-
straints are derived based on the experimental observa-
tions of possible values of torsion angles for particular
types of amino acids published in [23].

The full algorithm of Warecki-Znamirowski con-
sists of two phases:

— Phase I: Monte Carlo phase
In the first phase, random values of ¢ and ¥ tor-
sion angles are generated for each amino acid. The
space of possible values for torsion angles (360 x
360°) is restricted based on the type of amino acid
and the Ramachandran plot for the particular type
[23]. Protein conformation is then defined by a
vector of ¢ and v torsion angles. When all angles
are generated for the given amino acid chain, the
energy of the conformation E is calculated. The
whole process is repeated for a given amount of
tries i Total (the iTotal is specified by the user)
and b, best solutions are collected in a dedicated
array. The result of the Monte Carlo phase is the
array holding the best conformations of the given
amino acid chain. These conformations represent
approximations of valid solutions that might still
need some adjustment.
— Phase II: Angles Adjustment phase

The adjustment is performed in the second phase.
In this phase, each conformation stored in the
array of b, best conformations is examined once
again. The torsion angles ¢; and V; (I =
0,1, ...,n—1) of each conformation are modified
one by one by given values £kA¢ and +kA.
This simulates shaking the protein molecule and
continuous motions of particular atoms, wherein
the amplitude of the motions is determined by
the £A¢ and A values. The k parameter is a
positive and decreasing parameter during the con-
secutive steps of the minimization of the potential
energy function. The shaking process is contin-
ued until the k£ parameter reaches a fixed value.

@ Springer

After each modification of the torsion angle the
conformational energy E’(A") is calculated once
again, and if it is lower than the current minimum
E'(AN) < Epin, the modified conformation and
its energy are accepted and saved as a current best
result. The whole adjustment process is performed
for each of the b. best conformations.

The number of random tries i Total that Phase I
is repeated for is defined by the user. In Ref. [66]
Warecki and Znamirowski give the formula by which
users can estimate the minimal number of iterations
that are needed to model the molecule containing n
amino acids:

log(l — @)

iTotal ~ ————,
log(1 — &)

3

where: « is the probability of finding the optimal solu-
tion with the accuracy & € (0; 1), which is a part
of the range for each i’" pair of torsional angles,
i € (0,...,n — 1). For example, when modeling pro-
tein containing 5 amino acids (n = 5) and assuming
the accuracy of localization of the optimal solution to
be half of the range for each pair of torsional angles
& = 0.5 with probability « = 0.9, the number of iter-
ations iTotal = 73. It is worth noting that with the
same assumptions i T otal = 2,357 for n = 10 amino
acids, i Total = 75, 450 for n = 15 amino acids, and
iTotal = 2,414,435 for n = 20 amino acids. This
shows that the number of possible conformations that
should be explored grows quickly with the number of
amino acids.

The best conformation is the one that is character-
ized by the lowest value of the potential energy E.
Energies are calculated with the Tinker package [54]
and AMBER96 [37] molecular mechanics potentials
and the generalized Born continuum solvation model
(GBSA) in the presence of side chains.

2.2 Cloud4PSP Architecture

Cloud4PSP parallelizes the WZ method by the dis-
tribution of the computations in the Cloud comput-
ing. Cloud4PSP has been developed to work on the
Microsoft Azure public cloud. In the Microsoft Azure
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cloud, applications can be delivered by deploying pre-
configured virtual machines (IaaS) or as fully func-
tional SaaS solutions. For the latter case, Microsoft
provides a dedicated application programming inter-
face (API) for developers of any software application
that is intended to work on the Cloud. Internally,
such an application is composed of a set of roles - a
Web role providing a graphical user interface (GUI)
in the form of a web site, and Worker roles imple-
menting the application logic. The roles reside in and
execute the application logic on virtual machines pro-
vided by Microsoft, as a cloud provider. These virtual
machines come from Microsoft’s standard gallery of
virtual machines and provide various computational
capabilities depending on their size (see Table 1).

Roles working in the Cloud4PSP system create a
distributed set of processing units Qpy defined as
follows:

User\ Web role

Input queue

Qpy ={rwlU{rpmu} U Rpw, 4

where ry is the Web role responsible for the inter-
action with Cloud4PSP users, rpjs is the Prediction-
Manager role distributing requests received from the
Web role and preparing the workload, and Rpw is
a set of m instances of the PredictionWorker role
performing the prediction of protein structures in
parallel.

The architecture of the Cloud4PSP consisting of
the mentioned processing units is shown in Fig. 4.
The Web role provides a front-end for users of the
system, the PredictionManager role mediates the dis-
tribution of the prediction process and stores the
results in the Azure SQL Database, and the Prediction-
Worker roles predict the protein structure according
to the logic of the chosen prediction method. Control
instructions and parameters are transferred through

Prediction Manager
role

+8% 2
6 ]

——— e

Output queue

DB with
prediction results

3D protein

Azure
BLOB structures
= (PDB files)

Microsoft Azure public cloud

Prediction Prediction
Input Output
queue queue

AN

&) (6) (&

PredictionWorker roles

Fig. 4 Architecture of the Cloud4PSP - a cloud-based solution for ab initio protein structure prediction

@ Springer



570

D. Mrozek et al.

appropriate queues. Roles have access to various stor-
age resources, including Azure BLOBs (for PDB
files with predicted 3D structures) and Azure SQL
Database (for description of the results).

The Web role provides a Web site which allows
users to interact with the entire system. Through
the Web role users input the amino acid sequence
of the protein whose structure is to be predicted.
They also choose the prediction method (only one
is available at the moment, but the system provides
programming interfaces allowing us to bind new
methods), specify its parameters, e.g. the number of
iterations (random tries of the modified Monte Carlo
method), and provide a short description of the input
molecule.

The PredictionManager role distributes the predic-
tion process across many instances of the Predic-
tionWorker role. In other words, PredictionManager
implements the entire logic of how the prediction pro-
cess is parallelized. This may depend on the prediction
method used. Algorithm 1 describes how calculations
are scheduled and parallelized by the PredictionMan-
ager role with part of the code adapted to the speci-
ficity of the WZ prediction algorithm used. When the
prediction is performed according to the WZ algo-
rithm, the entire prediction process (in the system also
called a prediction job) consists of a vast number of
iterations (random selections of torsion angles) that,
in the Cloud4PSP, are performed in parallel by many
instances of the PredictionWorker role. The number
of iterations is specified by the user through the Web
role. In the configuration of the prediction job, the
user specifies the number of tasks (#fasks) and the
number of tries performed in each task (#iterations).
This gives flexibility in choosing the stopping crite-
rion and flexibility in configuring prediction jobs (and
in consequence, the number of candidate structures
after the prediction, since in this implementation of the
parallel prediction only the best conformations gen-
erated in Phase I by each task are adjusted in Phase
II and these tuned conformations are returned). The
total number of iterations performed within the predic-
tion job (i T otal) is a product of the number of tasks
(#tasks) and the number of tries performed in each
task (#iterations):

iTotal = #tasks x #iterations. ®))

The PredictionManager role creates a pool of #tasks
tasks (lines 6-7). Descriptions of these tasks, which
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contain the information on the prediction algorithm,
its parameters, random seed used to initialize a pseu-
dorandom number generator for the modified Monte
Carlo method, and the number of tries #iterations,
are stored in the PredictionInput queue (lines 11-12).
Prediction tasks are then consumed by instances of the
PredictionWorker role.

Instances of the PredictionWorker role act accord-
ing to Algorithm 2. They consume messages from
the Prediction Input queue (lines 2—-4), execute the
chosen prediction method, generate successive protein
structures, calculate potential energies for them (lines
6-7), store protein structures in PDB files, and then
save these files in Azure BLOBs (line 8). The set of
PredictionWorker role instances Rpw is defined as
follows:

RPW = {I’pwl'|i = 1, ,m} (6)

where rpyw; is a single instance of PredictionWorker
role, and m is the number of PredictionWorker role
instances working in the system.

Usually:

#tasks > m. @)

Steering instructions that control the entire system
and the course of action inside the Cloud4PSP are
transferred as messages through the queueing system.
There are four queues present in the architecture of the
Cloud4PSP:

— Input queue - collects structure prediction
requests (Prediction Job descriptions) generated
by users through the Web site.

— Output queue - collects notifications of predic-
tion completion for particular users (based on a
generated token number).

— Prediction Input queue - transfers parameters of
the prediction process for a single instance of the
PredictionWorker role, among others: amino acid
sequence provided by the user, the number of iter-
ations #iterations to be performed, parameters
of the prediction method.

— Prediction Output queue - transfers descriptions
of results, e.g. PDB file name with protein struc-
ture and potential energy value for the structure,
from each instance of the PredictionWorker role
back to the PredictionManager role.

The Input queue and Prediction Input queue are
very important for buffering prediction requests and
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Algorithm 1 PredictionManager role: Processing prediction jobs

1:

2
3:
4.

—

13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:

= oL X

while true do
Check messages in the Input queue
if exists a message then
Retrieve the message and extract parameters of the prediction job (protein se-
quence, F#tasks, prediction method, and its parameters)
Save job description in SQL Azure database
for i < 1, #tasks do > This part of the code is specific to WZ-oriented
Prediction Manager
Create a prediction task
Generate seed for the pseudorandom number generator
Assign the seed to the prediction task
Save prediction task description in SQL Azure database
Encode prediction task (seed, sequence, prediction method, and its parame-
ters) in the task description message
Enqueue task description message in the Prediction Input queue
end for
end if
Check messages in the Prediction Output queue
if exists a message then
Retrieve the message and extract results of the prediction task (name of the file
with predicted structure, potential energy)
Save task results in SQL Azure database
if all tasks completed then
Finalize the prediction job in SQL Azure database
end if
end if
end while

steering the prediction process. The prediction pro-
cess may take several hours and is performed asyn-
chronously. A user’s requests are placed in the Input
queue with the typical FIFO discipline and they
are processed when there are idle instances of the
PredictionWorker role that can realize the request.

Algorithm 2 PredictionWorker role: Processing prediction task

1:

2
3:
4.

10:

12:
13:

while true do
Check messages in the Prediction Input queue
if exists a message then
Retrieve the message and extract parameters of the prediction task (protein se-
quence, prediction method, and its parameters, including seed)
Update task start time in SQL Azure database
Execute prediction process according to the specified method
Collect results of the prediction (name of the file with predicted structure, po-
tential energy)
Save protein structure to Azure BLOB under given filename
Update task end time in SQL Azure database
Serialize task execution results in the prediction output message
Enqueue the message in the Prediction Output queue
end if
end while

Many users can generate many prediction requests,
so there must be a buffering mechanism for these
requests. Queues fulfill this task perfectly. One pre-
diction request enqueued in the Input queue causes
the creation of many prediction orders (tasks) for
instances of the PredictionWorker role. The Predic-
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Fig. 5 Cloud4PSP processing model showing components and objects involved in the prediction process, and the flow of messages

and data between components of the system

tionManager role consumes prediction requests from
the Input Queue, generates many predictions tasks,
each for performing the specified number of iterations
by PredictionWorker roles available in the system,
and generates task description messages to the Predic-
tion Input queue. The Prediction Output queue is used
by instances of the PredictionWorker role to return a
description of results to the PredictionManager role.
Such a feedback allows the PredictionManager role to
control if all the prediction tasks have been completed.
In the case of failure to realize of a prediction task,
its completion can be delegated to another Prediction-
Worker instance. The Output queue allows the Web
role to be notified that the whole prediction process is
already completed.

2.3 Cloud4PSP Processing Model

While building the Cloud4PSP, we have designed and
made available a dedicated processing model (Fig. 5)
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that is used by the Cloud4PSP and can be used by
developers extending the system in the future. In
the Cloud4PSP processing model, every prediction
request generated by a user causes the creation of a
Prediction Job (step 1). This is a special object with
the information on the entire prediction that must be
performed. This Prediction Job is submitted for exe-
cution (step 2), i.e., it is serialized to the message
that is placed in the Input queue. The PredictionMan-
ager role consumes Prediction Jobs, initialize them
(step 3) and, based on their description and avail-
able resources, creates so-called Prediction Tasks (step
4). These tasks are serialized to the messages that
are sent to the Prediction Input queue (step 5) and
are then consumed by successive PredictionWorker
role instances. PredictionWorker role instances exe-
cute tasks according to the description contained in the
retrieved message and using an appropriate prediction
method (step 6), and finally save the predicted pro-
tein structures in the Azure BLOB storage service
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Fig. 6 Interfaces, their
implementations for
PredictionManager and
PredictionWorker in the
form of base classes, and
inheritance for classes
representing a particular
prediction method. Dum-
myPredictionManager and
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(step 7). After completing the Prediction Task, Predic-
tionWorker confirms completion of the task and sends
a description of the generated protein structures to
the PredictionManager (step 8). The PredictionMan-
ager saves the results in the database managed by the
Azure SQL Database (step 9). By using an additional
register stored in the database, the PredictionManager
maintains awareness of the progress of the Prediction
Job execution. This emphasizes the importance of the
confirmations obtained in step 8. When the Prediction-
Manager states that all tasks have been completed, it
finalizes the job by setting an appropriate property in
the job’s register in the database (step 10) and sends
the notification to the Web role through the Output
queue (step 11). The Output queue stores notifica-
tions together with the token number generated for
the Prediction Job at the beginning of the prediction
process, i.e., when submitting the job for execution.
The Web role periodically checks the Output queue for
messages reporting the completion of the Prediction
Job and the statuses of prediction tasks in the database
(step 12). Partial results (results of already finished
tasks) are retrieved from the database. In this way,

the user knows whether the prediction process is
completed or is still in progress.

Such a processing model provides a kind of abstrac-
tion layer for developers of the system, hides some
implementation details, e.g., implementation of com-
munication and serialization of jobs and tasks, and
finally, provides a framework for future extensions of
the system.

2.4 Extending Cloud4PSP

Although Cloud4PSP has been designed to work
on the Microsoft Azure Cloud, its architecture and
workflow have a general character and can be also
implemented on other Clouds. This, however, would
require adoption of the programming model specific
to the Cloud provider and the tailoring of elements
of the architecture to available compute resources.
The architecture of Cloud4PSP could also be adapted
and extended to hybrid clouds by combining on-
premises compute resources and Microsoft Azure
cloud resources. This would require some additional
effort, related to moving the PredictionManager to
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the on-premises cluster or private cloud and parcel-
ing out prediction tasks across available resources.
However, this would also allow for the use of pub-
lic cloud resources to satisfy potentially increased
demand especially for compute units. If the sys-
tem needs some extra compute power, e.g., due to
an excessively long and computationally demanding
prediction process, part of the prediction job (some
prediction tasks) could be scheduled for execution on
the Azure cloud. Then, after the prediction process is
completed these commercial compute resources could
be released.

Cloud4PSP has been developed in such a way that it
allows developers to extend its functionality by adding
new modules. This is important, for example, in sit-
uations when new prediction algorithms have to be
added to the system. This determines the openness of
the system. Cloud4PSP has been mainly developed
as a software, which places it in the SaaS layer of
the cloud stack [47]. However, extensions are possi-
ble not only by using the processing model presented
in Section 2.3, but also by a set of programming inter-
faces provided for almost all components of the sys-
tem. In Fig. 6 we show interfaces, their implementa-
tions for PredictionManager (for parallelization logic)
and PredictionWorker (for the prediction method) in
the form of base classes, and inheritance for classes
representing particular prediction methods. By using
these base classes, advanced users and programmers
can plug in their own prediction methods (by inher-
itance from the PredictionBase class) and their own
computation scheduling algorithms (by inheritance
from the PredictionManagerBase class)

2.5 Scaling the Cloud4PSP

The scalability of the system means that it is able to
handle a growing amount of work in a capable man-
ner or is able to be enlarged to accommodate that
growth [5]. Cloud4PSP has this property. Cloud4PSP
is a cloud-based, high performance and highly scal-
able system for 3D protein structure prediction. The
scalability of the system is provided by the Microsoft
Azure cloud platform. The system can be scaled up
(vertical scaling) or scaled out (horizontal scaling).
Microsoft Azure allows us to combine both types of
scaling.

Cloud4PSP can be scaled out and scaled up dur-
ing the protein structure prediction process. Scaling

@ Springer

out means changing the value of m in (6). Scaling up
implies the change of the size of the PredictionWorker
role:

size(rpwi) € {XS,S,M,L, XL}, (8)

where: XS denotes ExtraSmall size, S - Small, M -
Medium, L - Large, XL - ExtralLarge. The sizes of the
virtual machines for PredictionWorker role instances
are described in Table 1 and are consistent with the
parameters of the computation units provided.

In the Cloud4PSP we also made the following
assumption regarding all instances of the Prediction-
Worker role:

Vrpw,',I‘ijERpw,i,jEI,.A.,m,i#j SiZE(FPW[):SiZE(rPWj). 9

The assumption of the same size for all instances of
the PredictionWorker role is motivated by the ease of
configuration and scaling of the system and by the
ease of analysis of its scalability.

The number of instances m of the PredictionWorker
role depends on the configuration of the Cloud4PSP. It
can be measured in thousands. The m is limited only
by the user’s subscription for Microsoft Azure cloud
resources and the number of compute units available
in the Azure cloud.

3 Results

Prediction of 3D protein structures from the begin-
ning with the use of the WZ method requires many
Monte Carlo iterations, which takes some time. The
number of iterations and therefore the total execution
time depend on the size of the protein modeled, i.e.,
the number of residues in the input sequence. During
our tests we successfully modeled a 20 amino acid
long part of the nonstructural protein NSP1 molecule
from the Semliki Forest virus with an RMSD of 0.99A.
The NMR structure of the molecule (PDB ID code:
1FW5) [40] from the Protein Data Bank is shown in
Fig. 7 (top). The structural alignment and superposi-
tion of the modeled molecule and NMR molecule are
presented in Fig. 7 (bottom). Modeling the 20 amino
acid long part of the NSP1 protein was a sample com-
putational procedure used for testing the efficiency
of the designed Cloud4PSP architecture in the real
(Microsoft Azure) cloud environment. Tests were per-
formed with the use of twenty CPU cores. Two of
these twenty cores, i.e., two compute units of the
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Fig.7 Crystal structure of the part of the NSP1 molecule (PDB
ID code: 1FW5) [40] from the Semliki Forest virus that was
modeled during experiments: (fop left) protein skeletal structure
made by covalent bonds between atoms (sticks display mode in

Small size, were allocated to allow the activity of the
Web role and PredictionManager role. The remaining
eighteen cores were used for the activity of the Predic-
tionWorker role instances and to test the scalability of
the system.

In particular, we have tested:

— the vertical scalability of the system - the effi-
ciency of the prediction process depending on the
size of instances of the PredictionWorker role,

— the horizontal scalability of the system - the effi-
ciency of the prediction process depending on the
number of instances of the PredictionWorker role,

— the efficiency of the prediction process depending
on the number of prediction tasks and the number
of iterations performed by each task.

In all cases, the scalability has been determined on
the basis of execution time measurements. We have
carried out at least two replicas for each measure-
ment. Then, the obtained results were averaged and
in such a way they are presented in the following
sections. Averaged values of measurements were also
used to determine n-fold speedups for both scaling
techniques.

3.1 Vertical Scalability

In the first phase of our tests, we wanted to check
which of the sizes for the compute units offered by
Microsoft Azure is most efficient. The basic tier for
the Web and Worker roles consists of the following

GLY1

!

Jmol [29]), (top right) secondary structure showing mainly «-
helical character of this fragment (ribbon display mode in Jmol),
(bottom) structural alignment and superposition of modeled
molecule and NMR molecule

five sizes: ExtraSmall (XS), Small (S), Medium (M),
Large (L), and Extralarge (XL). Their capabilities
were described in Sect. 1.2 and briefly compared in
Table 1. It is worth noting in Table 1 that beginning
from the Small size up to the Extralarge size the
amount of available memory and the number of cores
doubles gradually. The ExtraSmall size provides one,
shared core and is generally used when testing appli-
cations that should work on the Cloud, so as not to
generate unnecessary costs for the testing process.
While testing vertical scalability, we changed the
size of the PredictionWorker role from ExtraSmall
(one, shared CPU core) to Extralarge (eight CPU

8 7,30
7
6
o
3
3
g, 3,90
T
2 3
< 1,09
2
1,00 1,00
T
0
XS s M L XL

Size of PredictionWorker role

Fig. 8 Results of vertical scaling. Acceleration (n-fold
speedup) of the 3D protein structure prediction (prediction job)
as a function of the size of instances of the PredictionWorker
role
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Fig. 9 Results of vertical scaling. Average execution time
for a single prediction task as a function of the size of the
PredictionWorker role

cores). Only one PredictionWorker was used in this
test. The Prediction job was configured to explore 80
000 random conformations (iTotal) that were per-
formed in 16 prediction tasks. Multiple prediction
tasks were assigned to those instances of Predic-
tionWorker that possessed more than one CPU core,
proportionally to the number of cores (according to
the rule: one core - one task). The input sequence con-
tained 20 amino acids of the NSP1 molecule. Each
task was configured to generate 5 000 random protein
conformations (performed 5 000 iterations per task) in
Phase I of the WZ method, and to tune only one best
conformation in Phase II of the method (A¢ = Ay =
8 degrees for k = 3,2, 1 in successive adjustment
iterations).

In Fig. 8 we show the n-fold speedup when scal-
ing the system vertically. We observed that increasing
the size of the PredictionWorker role from Small
to Medium accelerated the prediction process almost
two-fold. Above the Medium size (2 cores), the
dynamics of the acceleration slowed down a bit - for
Large size (4 cores) the acceleration reached 3.90 and
for ExtralLarge size (8 cores) it reached 7.30.

When analyzing the results of tests, we deduced
that the slowdown in the acceleration dynamics was
an effect of two factors. The first factor was an over-
head caused by the necessity of handling multiple
threads. For example, on ExtraLarge-sized Prediction-
Workers we ran eight prediction tasks concurrently (8
CPU cores = 8 threads = 8 prediction tasks). And the
second factor was the cumulative I/O operations per-
formed on a local hard drive by many threads of the
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Fig. 10 Results of horizontal scaling. Total execution time for
a prediction job as a function of the number of instances of the
PredictionWorker role (Small size)

PredictionWorker role. During computations, the Pre-
dictionWorker role makes use of various executable
programs and additional files that must be read from
the local hard drive. It also stores some intermediate
results on the hard drive. Multiple threads of the role
that run on the compute unit multiply these read/write
operations and interfere with each other. Therefore,
the more threads were running on the compute unit
during our experiments, the more I/O operations were
performed, which influenced the n-fold speedup. This
is also visible when analyzing average execution times
for prediction tasks, as shown in Fig. 9.

In Fig. 9 we can clearly see that execution of a sin-
gle prediction task was the fastest when performed on
Small-sized instances and the slowest on Extralarge-
sized instances of the PredictionWorker role. How-
ever, Extralarge instances could host the execution
of eight prediction tasks at the same time, while
Small-sized instances could host only one. Therefore,
the total execution time for the whole prediction job
performed on Extralarge instances was 7.30 times
shorter than the same job performed on a single Small
instance.

3.2 Horizontal Scalability

In the second series of our performance tests, we
checked the horizontal scalability of the Cloud4PSP.
Tests were performed in the Microsoft Azure cloud.
During this series of tests we increased the number of
instances of the PredictionWorker role from one to 18.
Instances of the PredictionWorker role were hosted on
compute units of the Small size (one CPU core). The
Small-sized virtual machine represents the cheapest
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Fig. 11 Results of horizontal scaling. Acceleration (n-fold
speedup) of the 3D protein structure prediction as a function
of the number of instances of the PredictionWorker role (Small
size)

computational unit, providing one unshared core, and
is the smallest sized unit recommended for production
workloads [49]. Moreover, as proved by the experi-
mental results shown in Fig. 9, the size guaranteed the
fastest processing of prediction tasks.

While testing the horizontal scalability, we used
the same input sequence as in the vertical scalabil-
ity tests. The sequence contained 20 amino acids of
the NSP1 enzyme. The prediction was configured to
explore 4 000 random conformations (i7Total) that
were performed in 40 tasks. Each task was configured
to generate 100 random protein conformations (per-
formed 100 iterations per task) in Phase I of the WZ
method, and to tune only one best conformation in
Phase II of the method (A¢ = Ay = 8 degrees for
k = 3, 2, 1 in successive angle adjustment iterations).

In Fig. 10 we show total execution time for the
whole prediction as a function of the number of
instances of the PredictionWorker role. The results
obtained proved that the total prediction time can
be significantly reduced when increasing the num-
ber of compute units. Upon increasing the number of
instances from one to 18, we reduced the prediction
time from 9 h and 31 min to only 39 min.

Based on the execution time measurements that
we obtained during the performance tests, we calcu-
lated the n-fold speedup for various configurations of
the Cloud4PSP with respect to a single instance con-
figuration. Figure 11 shows how the n-fold speedup
changes as a function of the number of instances of the
PredictionWorker role.

We noticed that employing two instances of
the PredictionWorker role increased the speed of

the prediction process more than two-fold. Adding
more instances of the role proportionally acceler-
ated the process. Finally, the acceleration ratio (n-fold
speedup) reached the level of 14.52, when the num-
ber of instances of the PredictionWorker role was
increased from one to 18. A slowdown of the accel-
eration dynamics was observed when using more than
four compute units. This was caused by the uneven
processing times of individual tasks — the average exe-
cution time per task was 840 s, with minimum 340 s
and maximum 1722 s. Moreover, we have to remem-
ber that the execution times and n-fold speedup were
measured for the whole system. And therefore, the
execution times covered not only the execution of
particular prediction tasks, but also processing and
storing the results of these tasks by the Prediction-
Manager role. Consequently, by increasing the degree
of parallelism we raised the pressure on the Pre-
dictionManager, which serially processed incoming
prediction results.

An interesting question is also why the process-
ing times of tasks are so different. The answer lies
in the prediction method itself, and specifically in its
second phase. Phase I is fairly predictable in terms
of the speed of generating random protein confor-
mations and calculating energies for them (Fig. 12).
The problem lies in the second phase, which can take
much longer, depending on the length of the input
sequences, tuning parameters and the course of tuning
itself, which depends on the conformation generated
in the first phase. We observed that for the tested input
sequence Phase I took 5 % and Phase II took 95 % of
the whole execution time.

3.3 Influence of the Task Size

Since in Phase II of the WZ method angle adjust-
ment is only performed for the structure with the
lowest energy, while performing our experiments we
expected that the total execution time of the predic-
tion process might depend on the configuration of
the prediction tasks. We decided to verify how the
task size (i.e. the number of iterations) and entire
job configuration influence the whole prediction time
and how strong that influence is. For this purpose,
we decided to explore 4 000 random conformations
(iT otal) in the prediction process, for the same input
sequence as in the vertical and horizontal scalabil-
ity tests. The sequence contained 20 amino acids of
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Fig. 12 Efficiency of a
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the NSP1 molecule. We tested nine different config-
urations of the prediction job. Leaving the number of
random conformations (i T otal) constant, we appro-
priately selected the number of iterations per task and
the number of tasks. Phase II of the WZ method was
set up to tune only one best conformation for A¢ =
Ay = 8 degrees for k = 3,2, 1 in successive angle
adjustment iterations. Tests were performed using
sixteen Small-sized instances of the PredictionWorker
role.

The total execution times for various configura-
tions of the prediction job are shown in Fig. 13.
As can be observed, the most efficient is the con-
figuration with the lowest number of tasks and the
highest number of iterations (167 x 250i). The pre-
diction process for this configuration took 19 min and

# Monte Carlo trials (generated structures)

25 s. The configuration with the largest number of
small tasks (800¢ x 5i) proved to be extremely inef-
ficient. The prediction process for this configuration
took 11 h and 42 min. The reasons for such a behavior
of the system are the same as already discussed in
the previous section. The most time-consuming phase
of the WZ method is Phase II, which usually takes
90-98 % of the task execution time. By configur-
ing the system to use many small prediction tasks,
we multiplied the execution of the longest phase,
which resulted in a long execution time for the whole
prediction job.

For a small number of tasks it is advisable to
choose the number of tasks as a multiple of the number
of instances of the PredictionWorker role. For a larger
number of tasks (if # tasks > 2m) the rule does not

Fig. 13 Dependency 14:00:00
between execution time and
configuration of the 12:00:00-
prediction job
(#tasks x #iterations) for ’g 10:00:00-
the constant number of £ -
randomly generated £ 08:00:00
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apply, since the execution times for particular tasks are
different.

It is difficult to explicitly and clearly define the
configuration of the prediction job. It depends on
many factors, including the purpose of the prediction
process, the size of the input molecule, and others.
However, choosing a low number of tasks and a large
number of iterations has the following consequences:

— the efficiency of the prediction process is higher,

— users obtain fewer candidate structures after the
prediction is finished, and some good candidates
can be missed,

— fewer prediction results are stored in the database
and fewer 3D structures are stored in BLOBs,
which lowers the long-term costs of storage in the
Cloud,

— the cost of the computation process is lower due
to higher efficiency.

On the other hand, choosing a large number of
tasks and a low number of iterations has the following
consequences:

— the efficiency of the prediction process is lower,

— users obtain more candidate protein structures
after the prediction process, which increases the
chance to get the global minimum of the energy
function,

— more prediction results are stored in the database
and more candidate 3D structures are stored in
BLOBs, which increases the long-term costs of
storage in the Cloud,

— the cost of the computation process is higher due
to lower efficiency.

3.4 Scale Up, Scale Out or Combine?

Microsoft Azure allows us to scale out and scale up
applications and systems deployed in the Cloud. The
choice is left to the developer and administrator of the
system. In both cases, the system must be properly
implemented to utilize the resources of the multi-core
compute unit (when scaling up) and to distribute, and
then process, parts of the main job by many instances
of the Worker role (when scaling out). The workload
associated with the development of the system towards
each of the scaling types is difficult to express in num-
bers. However, there are some technical reasons that
speak in favor of particular scaling techniques. More-
over, we have conducted a series of tests in order

to compare similar configurations of the Cloud4PSP
architecture and answer which of the configurations is
more efficient.

We tested various configurations of the Cloud4PSP
by changing the size of the PredictionWorker
role from ExtraSmall (one, shared CPU core) to
Extralarge (eight CPU cores) and by changing the
number of instances of the role from one to eighteen
(if possible, depending on the size of the compute
unit). The prediction was configured to explore 100
000 random conformations (iTotal) that were per-
formed in 18 tasks. Multiple prediction tasks were
assigned to instances that possessed more than one
CPU core, proportionally to the number of cores
(according to the rule: one core - one task). The
input sequence contained 20 amino acids of the NSP1
enzyme. Each task was configured to generate 5 000
random protein conformations (performed 5 000 iter-
ations per task) in Phase I of the WZ method, and
to tune only one best conformation in Phase II of the
method (A¢p = Ay = 8 degrees for k = 3,2, 1 in
successive adjustment iterations).

We tested the following configurations of the
Cloud4PSP with respect to resource consumption by
the PredictionWorker role:

— one to eighteen ExtraSmall and Small compute
units,

— one to nine Medium compute units,

— one to four Large compute units,

— one to two Extralarge compute units.

In Fig. 14 we show the number of prediction tasks
completed within one hour as a function of the number
of instances of the PredictionWorker role for various
sizes of the instances. The results of the tests indicate
a slight advantage of horizontal scaling over verti-
cal scaling. Comparing both scaling techniques, we
noted that the number of prediction tasks completed
within one hour by eight Small (1-core) instances was
higher than those completed by one Extralarge (8-
core) instance. Similar behavior was observed when
comparing four Small instances vs. one Large (4-core)
instance, and two Small instances vs. one Medium
(2-core) instance, but the differences were not so sig-
nificant. We could draw the same conclusion based on
the charts showing n-fold speedups for vertical scaling
(presented in Fig. 8) and horizontal scaling (presented
in Fig. 11). For example, the acceleration ratio was
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slightly better for eight Small instances of the Predic-
tionWorker role (7.45) than for a single, Extral.arge
(8-core) instance (7.30).

When combining both scaling techniques, our
results again speak in favor of horizontal scaling with
the use of Small-sized instances, e.g., eighteen Small
instances vs. nine Medium instances, sixteen Small
instances vs. two Extralarge instances, eight Small
instances vs. two Large instances, etc. The differences
are not significant, but they increase with the num-
ber of simulation hours. We must also remember that,
although in Fig. 14 we present measurements for par-
ticular parameters of the prediction job, the entire
experiment reveals the relationships between particu-
lar configurations of the Cloud4PSP. The actual exe-
cution times depend on the size of the input sequence,
the number of Monte Carlo trials, the number of tasks,
and the parameters of the WZ method.

It should also be noted that horizontal scaling is
easier to implement. Once the Cloud4PSP system is
designed to be scaled horizontally, scaling can be done
at any moment after the system is published in the
Cloud and only if the system requires higher resources
(more compute units). Moreover, it can be done not
only manually by the administrator of the system, but
also automatically based on statistics of the system
performance and resource usage indicators.

4 Discussion

Building Cloud computing services for the predic-
tion of 3D protein structures, such as the presented
Cloud4PSP, responds to the current demands for hav-
ing widely available and scalable platforms solving
these types of difficult problems. This is very impor-
tant not only for scientists and research laboratories
trying to predict a single 3D protein structure, but also
for the biotechnology and pharmaceutical industry
producing new drug solutions for humanity.
Cloud4PSP is such a platform, allowing a highly
scalable prediction process in the Cloud, with all its
advantages and drawbacks. Cloud4PSP was originally
designed to be deployed in Microsoft’s commercial
cloud, where computing resources can be dynamically
allocated as needed. As we have shown, the predic-
tion process can be scaled up by adding more powerful
computing instances, or scaled out by allocating more
computing units of the same types. The results of our
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experiments have shown that scaling out by adding
more Small-sized computing units turned out to be
more effective and to give more development flexibil-
ity than scaling up (the acceleration rate for 8 cores
was 7.45 when scaling out and 7.30 when scaling up).
However, in the case of big molecules being modeled,
we may be forced to use larger compute units, e.g.
Medium, Large, or Extral.arge, and to combine hori-
zontal and vertical scaling. Delivering Cloud4PSP as
a service offloads bio-oriented companies from main-
taining their own IT infrastructures, which can now be
outsourced from the cloud provider. This has another
positive consequence - a low barrier to entry. Even a
laboratory or a company that cannot afford to possess
a high-performance computational infrastructure can
outsource it in the Cloud and perform a prediction pro-
cess starting with several computation units, then grow
up, if needed, and scale its systemo at any time.

On the other hand, the important aspects of process-
ing data in the Cloud are privacy and data protection.
As rightly pointed out by Gesing et al. [20], both
the input and output data of molecular simulations
are sensitive and may constitute a valuable intel-
lectual property. Therefore, they need to be stored
securely. Cloud security is still an evolving domain
and defensive mechanisms are implemented on vari-
ous levels of the functioning of the cloud-based sys-
tem. In order to protect the systems deployed in the
Cloud, Microsoft Azure provides a reach set of secu-
rity elements, including SSL mutual authentication
mechanisms while accessing various components of
the system, encryption of data stored in Azure Storage
and encryption of data transmission, firewalled and
partitioned networks to help protect against unwanted
traffic from the Internet, and many others. Many of
the security elements are explicitly, and many of them
implicitly, used by Cloud4PSP, e.g., secure access to
Azure BLOBs using HTTPS, secure authentications
when accessing SQL Azure, where prediction results
are stored, SSL-based communication between inter-
nal components. In terms of data privacy, Microsoft is
committed to safeguarding the privacy of data and fol-
lows the provisions of the E.U. Data Protection Direc-
tive. Users of the Azure cloud, i.e., cloud application
developers, may specify the geographic areas where
the data are stored and replicated for redundancy.
Also, the distribution and deployment model of the
Cloud4PSP supports privacy and data protection. On
the deployment level, various users and companies are
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Fig. 14 Comparison of the

efficiency of horizontal and
vertical scaling, and the
combination of both scaling
techniques. The number of
prediction tasks completed
within one hour as a
function of the number of
instances of the
PredictionWorker role for
various sizes of the
instances. Measurements
for ExtraSmall (XS) and

#prediction tasks per hour

——XS
---S

—=L
== XL

Small (S) sizes are similar 0

expected to establish their private Cloud4PSP-based
clusters in the Azure cloud for their own simulations.
This ensures separation of data and computations per-
formed by two companies, for which the predicted
3D structures of proteins may be a highly-protected
intellectual property. Finally, on the application level,
Cloud4PSP provides additional security mechanism
of 128-bit GUID'-based tokens for protecting access
to results of prediction processes.

Comparing Cloud4PSP to other solutions men-
tioned in the Introduction section, we can draw the
following conclusions. Firstly, Cloud4PSP, in terms of
what it offers to the end user, is a typical Software
as a Service solution (SaaS), and also an extensible
computational framework, where advanced users may
add their own prediction methods. This is the fun-
damental feature that differentiates our cloud-based
software from the Cloud BioLinux. Cloud BioLinux
provides a virtual machine and, in the context of the
presented service stack, functions in the Infrastructure
as a Service (IaaS) model, providing pre-configured
software on a pre-configured Ubuntu operating system
and leaving the users the responsibility for maintain-
ing the operating systems and configuring the best
way to scale the available applications. The second
fundamental difference between the two solutions
is the software used for structure prediction. Cloud
BioLinux is rich in various software packages, allow-
ing us to perform many processes in the domain
of bioinformatics. However, in terms of the protein

!GUID - Globally Unique Identifier

5 6 7 8 9 10 11 12 13 14 15 16 17 18
# PredictionWorker instances

structure prediction, it represents a different approach
to the problem. It relies on the PredictProtein and
provides tools for the prediction of secondary struc-
tures of macromolecules, not 3D structures. Unlike
Cloud BioLinux, Cloud4PSP is focused on ab initio
prediction methods for tertiary structure.

Considering these two mentioned features, i.e. the
service model and prediction methods, Cloud4PSP is
more similar to Rosetta@Cloud and its AbinitioRe-
lax application. In both systems prediction services are
provided in the SaaS model. Although both systems
use different prediction methods, the implemented
prediction methods belong to the same ab initio class.
Both systems are prepared to be published to the
Cloud, giving users the ability to establish their pri-
vate cloud-based clusters for 3D protein structure
prediction, which is also important from the viewpoint
of data protection. Rosetta@Cloud builds a cluster
of compute units on Amazon Web Services (AWS)
and Cloud4PSP works on the Microsoft Azure cloud.
There are also some similarities and differences in
the architectures of the two systems. Rosetta@Cloud
uses a so-called Master Node that controls the distri-
bution of workload among Worker Nodes. The Master
Node in Rosetta@Cloud is a counterpart of the Pre-
dictionManager role in Cloud4PSP, and Worker Nodes
are counterparts of instances of the PredictionWorker
role. However, Rosetta’s GUI for launching predic-
tions is installed locally on the user’s computer as
Rosetta@Cloud Launcher, i.e., it works outside the
cloud infrastructure, while the Cloud4PSP GUI is
designed to be available through a web site (provided
by the Web role working inside the cloud), and there-
fore, users do not have to install anything locally.
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Moreover, Cloud4PSP uses queues to buffer predic-
tion requests. Applying queues has several advan-
tages. Since queues provide an asynchronous messag-
ing model, users of Cloud4PSP need not be online
at the same time. Queues reliably store prediction
requests as messages until the Cloud4PSP is ready
to process them. Then, Cloud4PSP can be adjusted
and scaled out according to the current needs. As the
depth of the prediction request queue grows, more
computing resources can be provisioned. Therefore,
such an approach allows money to be saved, taking
into account the amount of infrastructure required to
service the application load. Moreover, the queue-
based approach allows load balancing - as the number
of requests in a queue increases, more instances of
the PredictionWorker role can be added to accelerate
the prediction. In both systems the prediction process
can be measured and end-users can be charged based
on some metrics, such as the amount of computing
instances, storage requirements, and data transfers.

On a critical note, we have to admit that, although
Cloud4PSP implements a relatively new algorithm
for 3D protein structure prediction, which is based
on Monte Carlo simulations and structure refinement,
at the current stage of development, it is unable to
catch up Rosetta@Cloud in terms of the wealth of
deployed software for predicting protein structures.
However, the advantage of the WZ method used in
the Cloud4PSP is that it eliminates the drawbacks of
widely used gradient-based methods and this brings it
closer to finding the global minimum of energy function.

Implementation of other prediction methods
remains in the perspective of system development in
the future. Advanced users may also extend the sys-
tem by adding their own, new prediction methods. We
also have to mention that our tests were performed
for the prediction of small molecular structures. For
large proteins, the number of iterations needed for
modeling the structure increases exponentially, and
the process requires more computational resources
than those which we had during our tests.

5 Summary
Predicting protein structures from the beginning using
the ab initio methods is one of the most challenging

tasks for modern computational biology. This requires
huge computing resources to allow us to perform
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calculations in parallel in order to reduce the pre-
diction time. Cloud computing provides theoretically
unlimited computing resources in a pay-as-you-go
model. This is very important feature of the cloud
architecture. Clouds provide an important comput-
ing power that can be provisioned on-demand and
according to particular needs, which perfectly fits the
character of the prediction process.

6 Availability

Cloud4PSP software is available at the project
home page http://zti.polsl.pl/w3/dmrozek/science/
cloud4psp.htm. The system can be used by the aca-
demic society for free, i.e., the software is free, but
users have to lease the Cloud hardware infrastruc-
ture to use the system for their own costs. Users
will have to configure and publish the system on the
Azure cloud. Configuration details are provided at the
Cloud4PSP project home page.

Further development of the system will be car-
ried out by the Cloud4Proteins non-profit, scien-
tific group (http://www.zti.aei.polsl.pl/w3/dmrozek/
science/cloud4proteins.htm).
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