13 research outputs found

    NADPH oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents.

    Get PDF
    The activation of NADPH oxidase has been implicated in NEFA-induced beta cell dysfunction. However, the causal role of this activation in vivo remains unclear. Here, using rodents, we investigated whether pharmacological or genetic inhibition of NADPH oxi

    Susceptibility to fatty acid-induced beta-cell dysfunction is enhanced in prediabetic diabetes-prone biobreeding rats: a potential link between beta-cell lipotoxicity and islet inflammation

    Get PDF
    beta-Cell lipotoxicity is thought to play an important role in the development of type 2 diabetes. However, no study has examined its role in type 1 diabetes, which could be clinically relevant for slow-onset type 1 diabetes. Reports of enhanced cytokine toxicity in fat-laden islets are consistent with the hypothesis that lipid and cytokine toxicity may be synergistic. Thus, beta-cell lipotoxicity could be enhanced in models of autoimmune diabetes. To determine this, we examined the effects of prolonged free fatty acids elevation on beta-cell secretory function in the prediabetic diabetes-prone BioBreeding (dp-BB) rat, its diabetes-resistant BioBreeding (dr-BB) control, and normal Wistar-Furth (WF) rats. Rats received a 48-h iv infusion of saline or Intralipid plus heparin (IH) (to elevate free fatty acid levels ~2-fold) followed by hyperglycemic clamp or islet secretion studies ex vivo. IH significantly decreased beta-cell function, assessed both by the disposition index (insulin secretion corrected for IH-induced insulin resistance) and in isolated islets, in dp-BB, but not in dr-BB or WF, rats, and the effect of IH was inhibited by the antioxidant N-acetylcysteine. Furthermore, IH significantly increased islet cytokine mRNA and plasma cytokine levels (monocyte chemoattractant protein-1 and IL-10) in dp-BB, but not in dr-BB or WF, rats. All dp-BB rats had mononuclear infiltration of islets, which was absent in dr-BB and WF rats. In conclusion, the presence of insulitis was permissive for IH-induced beta-cell dysfunction in the BB rat, which suggests a link between beta-cell lipotoxicity and islet inflammation
    corecore