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Susceptibility to Fatty Acid-Induced �-Cell
Dysfunction Is Enhanced in Prediabetic Diabetes-
Prone BioBreeding Rats: A Potential Link Between
�-Cell Lipotoxicity and Islet Inflammation

Christine Tang,* Anthony E. Naassan,* Astrid Chamson-Reig, Khajag Koulajian,
Tracy T. Goh, Frederick Yoon, Andrei I. Oprescu, Husam Ghanim, Gary F. Lewis,
Paresh Dandona, Marc Y. Donath, Jan A. Ehses, Edith Arany, and Adria Giacca

Departments of Physiology (C.T., A.E.N., K.K., T.T.G., F.Y., G.F.L., A.G.) and Medicine (G.F.L., A.G.) and
Institute of Medical Sciences (A.I.O., A.G.), University of Toronto, Toronto, Ontario, Canada M5S 1A8;
Department of Medicine and Pathology (A.C.-R., E.A.), University of Western Ontario, London, Ontario,
Canada N6A 5C1; Lawson Health Research Institute (A.C.-R., E.A.), University of Western Ontario,
London, Ontario, Canada N6C 2R5; Division of Endocrinology, Diabetes, and Metabolism (H.G., P.D.),
State University of New York at Buffalo, Kaleida Health, Buffalo, New York 14221; Division of
Endocrinology, Diabetes, and Nutrition (M.Y.D.), University Hospital Zurich, University of Zurich, Zurich,
Switzerland 8091; Center for Integrative Human Physiology (M.Y.D.), University of Zurich, Zurich,
Switzerland 8006; and Department of Surgery (J.A.E.) and Child and Family Research Institute, The
University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4

�-Cell lipotoxicity is thought to play an important role in the development of type 2 diabetes.
However, no study has examined its role in type 1 diabetes, which could be clinically relevant for
slow-onset type 1 diabetes. Reports of enhanced cytokine toxicity in fat-laden islets are consistent
with the hypothesis that lipid and cytokine toxicity may be synergistic. Thus, �-cell lipotoxicity could
be enhanced in models of autoimmune diabetes. To determine this, we examined the effects of
prolonged free fatty acids elevation on �-cell secretory function in the prediabetic diabetes-prone
BioBreeding (dp-BB) rat, its diabetes-resistant BioBreeding (dr-BB) control, and normal Wistar-
Furth (WF) rats. Rats received a 48-h iv infusion of saline or Intralipid plus heparin (IH) (to elevate
free fatty acid levels �2-fold) followed by hyperglycemic clamp or islet secretion studies ex vivo.
IH significantly decreased �-cell function, assessed both by the disposition index (insulin secretion
corrected for IH-induced insulin resistance) and in isolated islets, in dp-BB, but not in dr-BB or WF,
rats, and the effect of IH was inhibited by the antioxidant N-acetylcysteine. Furthermore, IH sig-
nificantly increased islet cytokine mRNA and plasma cytokine levels (monocyte chemoattractant
protein-1 and IL-10) in dp-BB, but not in dr-BB or WF, rats. All dp-BB rats had mononuclear infil-
tration of islets, which was absent in dr-BB and WF rats. In conclusion, the presence of insulitis was
permissive for IH-induced �-cell dysfunction in the BB rat, which suggests a link between �-cell
lipotoxicity and islet inflammation. (Endocrinology 154: 89–101, 2013)

The diabetes-prone BioBreeding (dp-BB) rat is an estab-
lished animal model of type 1 diabetes. Diabetes in

these rats is spontaneous and severe and is preceded by
insulitis, similar to human type 1 diabetes (1). In contrast

to human diabetes, diabetes in the dp-BB rat is associated
with T-cell lymphopenia and can be prevented by regula-
tory RT6� T cells. The diabetes-resistant BioBreeding (dr-
BB) rats do harbor autoreactive cells but are resistant to
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Abbreviations: CD, Cluster of differentiation; COX-2, cyclooxygenase-2; DI, disposition
index; dp-BB, diabetes-prone BioBreeding; dr-BB, diabetes-resistant BioBreeding; FFA, free
fatty acid; Ginf, glucose infusion rate; GSIS, glucose-stimulated insulin secretion; IFN,
interferon; IH, Intralipid plus heparin; iNOS, inducible nitric oxide synthase; MCP-1, mono-
cyte chemoattractant protein-1; M/I, glucose metabolism divided by plasma insulin; NAC,
N-acetylcysteine; NF-�B, nuclear factor �B; SAL, saline; WF, Wistar-Furth.

D I A B E T E S - I N S U L I N - G L U C A G O N - G A S T R O I N T E S T I N A L

Endocrinology, January 2013, 154(1):89–101 endo.endojournals.org 89

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article/154/1/89/2423312 by W

estern U
niversity user on 31 August 2022



autoimmune diabetes, unless depleted of regulatory
RT6� T cells (2).

�-Cell dysfunction and destruction in type 1 diabetes
and BB rats are due to autoimmune inflammation of islets,
where cytokines result in production of reactive oxygen
species (3) and reactive nitrogen species (4) via up-regu-
lation of inducible nitric oxide synthase (iNOS) (5). Both
antioxidants (6) and inhibitors of iNOS (7) reduce the
incidence of diabetes in dp-BB rats.

Studies in the past decade have suggested that islet in-
flammation is a shared etiology for both type 1 and type
2 diabetes (8). In type 2 diabetes, islet inflammation is not
caused by autoimmunity but by excess of energy substrate
(glucose and fat). Indeed, similar to cytokines, free fatty
acids (FFAs) can induce alterations in both �-cell function
and mass (i.e. �-cell lipotoxicity) (9) via mechanisms that
include oxidative stress (10) and up-regulation of iNOS
(11). FFAs are generally elevated in conditions that pre-
dispose to type 2 diabetes, such as obesity and insulin resis-
tance, because of increased lipolysis from the expanded ad-
ipose tissue and resistance to the antilipolytic action of
insulin. Therefore, in type 2 diabetes, lipotoxicity is thought
toplayan important role in thepathogenesisof �-cell failure.
Although FFAs are sensitive markers of insulin deficiency
(12) and increased FFAs have been described early in the
pathogenesis of some animal models of type 1 diabetes (13,
14), lipotoxicity has not been traditionally associated with
type 1 diabetes. However, reports of cytokine up-regulation
(15,16)andenhancedcytokine toxicity in fatexposed�-cells
in vitro (17, 18) are consistent with the hypothesis that lipid
and cytokine toxicity may be synergistic. Lipotoxicity could
play a contributing role to �-cell failure if the inflamed islets
ofprediabetic type1 individualshave increasedsusceptibility
to the impairingeffectofFFA.Achronic increase inFFAmay
be induced by incipient insulin deficiency or by concomitant
obesity. Indeed, there is evidence that overweight, which is
associated with elevated FFA, is a risk factor for latent au-
toimmune diabetes (19), which is a slow-onset form of type
1 diabetes, as well as for type 1 diabetes in general (“accel-
erator hypothesis,” reviewed in Ref. 20).

Data in animals suggest that FFA may be one link be-
tween obesity and acceleration of autoimmune diabetes.
For example, fat restriction (21) or depletion of n-6 fatty
acids (22) reduced the incidence of diabetes in the nono-
bese diabetic mouse. To investigate whether the presence
of autoimmune inflammation could predispose �-cells to
the effects of fat, we evaluated �-cell secretory function
during a two-step hyperglycemic clamp, and ex vivo in
isolated islets, after prolonged (i.e. 48 h) iv fat infusion
[standard Intralipid plus heparin (IH) method to elevate
plasma FFA] in dp-BB, dr-BB, and normal Wistar-Furth
(WF, the strain of origin of BB rats) rats.

Materials and Methods

Animals
Animal experiments were carried out according to protocols

approved by the University of Toronto Animal Care Committee.
Nine-week-old female dp-BB and dr-BB rats were obtained from
Health Canada (Ottawa, Canada). The incidence of diabetes in
dp-BB rats from this colony is 65.3 � 14.9% (mean � SD) (23).
These animals carry a mutation of a member of the immunity-
associated nucleotide binding protein family, which is important
for T lymphocyte survival (24). The dr-BB rats are derived from
a subline of the original BB rat colony that does not spontane-
ously develop diabetes. Age-matched female WF rats, which are
major histocompatibility complex-compatible with BB rats (25),
were also used as controls. These rats were obtained from Harlan
(Indianapolis, IN), because Health Canada does not breed them.
The rats were housed in the Department of Comparative Med-
icine. They were exposed to a 12-h light, 12-h dark cycle and
were fed standard rat chow. Random plasma glucose levels were
tested at least twice per week using a glucometer (Bayer, To-
ronto, Canada). Only 11-wk-old rats with glucose values less
than 11 mmol/liter were used. We therefore excluded the dp-BB
rats that developed diabetes (approximately one out of three
dp-BB rats obtained at 9 wk). Animals were cannulated as in Ref.
26. The jugular catheter served for infusion and the carotid cath-
eter for blood sampling. Rats were allowed at least 3 d after
surgery to recover before infusions.

Forty-eight-hour infusions
Rats were randomized to one of the following protocols: sa-

line (SAL) or IH. Average body weights (in grams) before infu-
sions were: dp-BB SAL, 227 � 11, n � 9; dp-BB IH, 215 � 8, n �
10; dr-BB SAL, 210 � 5, n � 11; dr-BB IH, 212 � 5, n � 11; WF
SAL, 166 � 3, n � 8; and WF IH, 174 � 5, n � 9) (P � 0.001,
WF vs. dp-BB or dr-BB). A subset of dp-BB rats was also infused
with IH or SAL plus the antioxidant N-acetylcysteine (NAC)
(2.76 �mol/kg�min), which protected against fat-induced �-cell
dysfunction in normal Wistar rats (27). Intralipid (Baxter Corp.,
Toronto, Canada) is a commercially prepared triglyceride emul-
sion, which contains mostly n-6 polyunsaturated fatty acids (26).
Heparin stimulates the breakdown of Intralipid to fatty acids by
lipoprotein lipase. 20% Intralipid was infused at 2.5 �l/min in
the dp-BB, 3 �l/min in the dr-BB rats, and 5.5 �l/min in the WF
rats to approximately double plasma FFA. Heparin had been
added to the Intralipid to reach a concentration of 20 U heparin/
ml. Different doses of IH were necessary to obtain a similar FFA
elevation in the different groups, presumably because of the pre-
viously reported elevation of apolipoprotein-CII (activator of
lipoprotein lipase) in BB vs. Wistar rats (28). The infusion pro-
cedure has been described in Ref. 27. After 48 h of infusion and
overnight fasting, we carried out one of the following protocols:
1) hyperglycemic clamp, 2) hyperinsulinemic clamp, or 3) islet
isolation.

Two-step hyperglycemic clamp
Insulin secretion was determined by measuring plasma insulin

and C-peptide during a two-step (�13 and 22 mmol/liter) hyper-
glycemic clamp that was performed in conscious rats. The clamp
details are described in Refs. 26, 27. At the end of the clamp, rats
were anesthetized with a ketamine:xylazine:acepromazine cocktail
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(27), and the whole pancreas was removed, fixed overnight in
Bock’s solution, and then stored in 70% ethanol. The samples were
embedded in paraffin within 5 d of collection.

Hyperinsulinemic-euglycemic clamp
A 120-min hyperinsulinemic-euglycemic clamp, as described

in Ref. 29, was conducted in conscious rats fasted overnight to
determine insulin sensitivity.

Islet isolation and ex vivo evaluation of glucose-
stimulated insulin secretion (GSIS)

Pancreatic islets were isolated using the Ficoll/Histopaque
method as described in Ref. 30. GSIS was evaluated as in Ref. 30.

Real-time PCR
Total rat islet RNA was extracted as previously described

(16). Quantitative PCR was done using commercial TaqMan
gene expression assays and the real-time PCR system 7500 of
Applied Biosystems (Foster City, CA). TaqMan assays are avail-
able upon request. Changes in mRNA expression were calcu-
lated using difference of cycle threshold values compared with a
housekeeping gene (18S), expressed relative to controls.

Immunohistochemistry
Pancreatic slides were double-stained for insulin and gluca-

gon using antibodies from Abcam, Inc. (Cambridge, MA) and
Santa Cruz Biotechnology, Inc. (Santa Cruz, CA) coupled with
an alkaline phosphatase and a peroxidase detection method, re-
spectively. Cluster of differentiation (CD) 3 and 68 staining were
performed using antibodies from Dako Corp. (Carpinteria, CA)
and a peroxidase detection method. Adjacent sections were
stained for insulin using an antiinsulin antibody from Biomeda
(Foster City, CA) coupled with peroxidase detection.

The insulitis score for each islet was as follows. Score 0, no
infiltration. Score 1, infiltration of lymphocytes and/or leuko-
cytes, macrophages, dendritic cells in islet periphery. Score 2,
infiltration into the islet core. Score 3, infiltration into the islet
core associated with �-cell destruction (distorted islet). Score 4,
complete loss of �-cells with variable infiltration in remnant islet.

Relative �-cell area was determined from the ratio between
areas of insulin-positive cells and total pancreatic area. Three
sections of the entire pancreas separated by 100 �m were used as
in our previous studies (30).

Plasma assays
GlucosewasmeasuredwithaBeckmanGlucoseAnalyzer II (Beck-

man Instruments, Fullerton, CA), FFA with a colorimetric kit (Wako
Industries, Neuss, Germany), and insulin and C-peptide with RIA kits
(Linco Research, Inc., St. Charles, MO) (intra- and interassay coeffi-
cients of variation � 10%). Cytokines were run on Lincoplex.

Calculations

Insulin sensitivity
The index of sensitivity M/I [glucose metabolism (M), which

is represented by Ginf divided by plasma insulin (I)] (31) was
calculated during both the hyperglycemic clamp and the hyper-
insulinemic clamp by dividing the steady-state glucose infusion
rate (Ginf) by the plasma insulin level.

�-Cell function
Plasma C-peptide was taken as an index of absolute insulin

secretion, as insulin secretion rate cannot be calculated in rats,
because C-peptide kinetics are unknown (the species-specific rat
C-peptide is not available for injection). Notably, IH has not
been found to affect C-peptide kinetics in humans (32). Insulin
secretion in vivo has to be evaluated in the context of insulin
sensitivity, because the normal �-cell compensates for insulin
resistance by increasing secretion, independent of plasma glu-
cose (33). The relationship between insulin sensitivity and insulin
secretion in normal humans is hyperbolic, i.e. the product of
insulin sensitivity and insulin secretion is a constant defined as
disposition index (DI) and considered as a measure of �-cell
function (33, 34). In our SAL-treated control rats, the relation-
ship between C-peptide and M/I index (from the hyperglycemic
clamp) was also hyperbolic (C-peptide � M/I � DI, a constant),
that is there was a significant inverse relationship between the
two variables after logarithmic transformation (r2 � 0.41, P �
0.001 in WF rats; r2 � 0.60, P � 0.001 in dr-BB rats) with slopes
not significantly different from �1 (�0.85 � 0.15 and �0.96 �
0.17, respectively). Therefore, we calculated DI as the product of
C-peptide and the M/I index (from the hyperglycemic clamp)
during the last 40 min of each step of the hyperglycemic clamp.

We also calculated DI using the M/I index from the hyperin-
sulinemic-euglycemic clamp (gold standard method for assessing
insulin sensitivity), multiplied by C-peptide from the hypergly-
cemic clamp. This was done with the group averages, as the
hyperinsulinemic-euglycemic and hyperglycemic clamps were
not performed in the same rat because of the invasiveness of a
combined clamp protocol (see Results).

In addition, we corrected insulin secretion for insulin sensitivity
with statistical methods. C-peptide was adjusted for M/I during the
hyperglycemic clamp via covariance analysis as previously used in
epidemiological studies (35). Both variables were logarithmically
transformed and ln(M/I) was inserted as a covariate in a linear
modelbetween ln(C-peptide)asdependentvariable,andgroup(dp-
BB, dr-BB, and WF), treatment (SAL and IH) and their interaction
as independent variables. The method is conceptually similar to the
calculation of DI, as can be seen by the logarithmic transformation
of the hyperbolic relationship C-peptide � M/I � DI, which yields
ln(C-peptide) � ln(M/I) � ln(DI) and after rearrangement ln(C-
peptide) � ln(DI) (i.e. a constant) � 1 � ln(M/I) (note the slope of
�1). The hypothesis to be tested by the model was that the effect of
treatment on the adjusted ln(C-peptide) levels would have signifi-
cantly differed between groups (different interaction effect). The
statistical method is a more conservative method of adjusting in-
sulin secretion for insulin sensitivity than calculating a DI, because
the error of the inverse relationship is taken into account.

Statistical analysis
Data are presented as mean � SE. A nonparametric one-way

ANOVA for repeated measurements was used to examine the
difference between treatments within each group. Data were also
analyzed within treatments to examine the difference between
groups using nonparametric ANOVA for repeated measure-
ments followed by Tukey’s post hoc. The calculations were per-
formed using SAS (SAS Institute, Cary, NC). Significance was
accepted at P � 0.05.
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Results

Preclamp (48-h infusion) period
In the rats used for the hyperglycemic clamps, FFA lev-

els were elevated to approximately 2-fold basal with pro-
longed IH infusion in all groups. In dr-BB rats, the FFA
elevation appeared to be less than that in dp-BB rats; how-

ever, the difference was not significant. Furthermore, no

significant differences in both basal and elevated FFA lev-

els were found between groups (Supplemental Fig. 1A,

published on The Endocrine Society’s Journals Online

web site at http://endo.endojournals.org). Total FFA ele-

vation over the 48-h period was also similar among IH-

FIG. 1. Plasma glucose levels (A), Ginf (B), plasma insulin (C), and plasma C-peptide (D) during a two-step hyperglycemic clamp in dp-BB, dr-BB,
and WF rats infused for 48 h with IH or equivolume SAL. Data are mean � SE. Number of animals studied (n), 8-11 per group. During both steps
of the hyperglycemic clamp, the glucose levels were superimposable in all groups (A). Ginf was reduced in IH-infused dp-BB and WF, but not dr-
BB, rats (B). No differences in basal insulin and C-peptide were observed between IH- and SAL-infused rats. Clamp insulin and C-peptide tended to
be higher with IH than SAL in dr-BB rats (C and D). *, P � 0.05 vs. SAL.
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infused rats used for islet secretion studies (dp-BB, 10,203
�Eq/liter; dr-BB, 11,157 �Eq/liter).

Baseline fed plasma glucose and plasma glucose levels
during the 48-h IH/SAL infusion were not significantly dif-
ferent between groups or treatments (Supplemental Fig. 1B).

Baseline fed plasma insulin levels and insulin levels dur-
ing the 48-h IH/SAL infusion were also similar between
groups or treatments (Supplemental Fig. 1C).

Neither glucose nor insulin levels were different be-
tween groups or treatments in the rats used for the islet
secretion studies (data not shown).

Two-step hyperglycemic clamp
During the basal period (�20 to 0 min), plasma FFA

levels were elevated by approximately 2-fold. Neither the

FFA elevation nor the elevated FFA levels were signifi-
cantly different between groups. FFA declined throughout
the two-step hyperglycemic clamp as a result of hypergly-
cemia and hyperinsulinemia. However, FFA remained
higher in all IH-treated groups (Supplemental Table 1).

There were no differences in basal glucose among
groups or treatments. During the first step of the two-step
hyperglycemic clamp, plasma glucose levels rose to 13
mmol/liter, which was maintained until 120 min. During
the second step of the clamp, plasma glucose levels grad-
ually rose to 22 mmol/liter, which was maintained until
240 min. During both steps of the clamp, the glucose levels
were superimposable in all groups or treatments (Fig. 1A).

The Ginf necessary to achieve and maintain the hyper-
glycemic targets was lowered by IH in-
fusion in dp-BB (P � 0.05 vs. SAL at 13
mmol/liter glucose) andWF(P�0.05vs.
SAL at 22 mmol/liter glucose), but not
dr-BB, rats (Fig. 1B).

As expected, plasma insulin and C-
peptide concentrations rose in response
to glucose during the clamp. IH did not
significantly change insulin or C-pep-
tide response in any group, although it
tended to increase it in dr-BB rats (Fig.
1, C and D).

The ratio between C-peptide and in-
sulin (data not shown), which is an ap-
proximate index of insulin clearance,
was not significantly decreased by IH in
any groups.

IH infusion tended to decrease insu-
lin sensitivity, assessed by the sensitiv-
ity index (M/I index), in all groups;
however, this was not significant (Ta-
ble 1).

Because we could find a hyperbolic
relationship between M/I and C-pep-
tide levels in both our control groups
(SAL-treated WF and dr-BB rats) as de-
scribed in Materials and Methods, we
calculated the DI, which is an index of

FIG. 2. DI (calculated as plasma C-peptide level multiplied by the sensitivity index M/I
reported in Table 1) during the last 40 min of each step of the two-step hyperglycemic clamp
(13 and 22 mmol/liter) in dp-BB, dr-BB, and WF rats infused for 48 h with IH or SAL. Data are
mean � SE. Number of animals studied (n), 8-11 per group. DI was reduced to the greatest
extent by IH in dp-BB rats. IH tended to decrease DI at 22 mmol/liter glucose in WF rats. IH did
not decrease DI in dr-BB rats both at 13 and 22 mmol/liter. A, Units of DI � C-peptide
multiplied by �mol·kg�1�min�1 glucose infusion per pmol/liter insulin. *, P � 0.05 vs. SAL;
**, P � 0.01 vs. SAL.

TABLE 1. Sensitivity index calculated during the two-step (13 and 22 mmol/liter) hyperglycemic clamp after 48 h of
SAL or IH infusion in dp-BB, dr-BB, and WF rats

dp-BB dr-BB WF

Sensitivity indexa 13mmol/liter SAL 0.72 � 0.13 0.67 � 0.13 0.58 � 0.13
IH 0.47 � 0.05 0.42 � 0.05 0.39 � 0.05

22mmol/liter SAL 0.57 � 0.12 0.43 � 0.08 0.36 � 0.06
IH 0.49 � 0.09 0.18 � 0.03 0.24 � 0.03

Number of animals studied (n), 8-11 per group.
a Units of sensitivity index, �mol·kg�1�min�1 glucose infusion per pmol/liter insulin (last 40 min).
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insulin secretion corrected for insulin sensitivity. IH de-
creased DI in dp-BB rats (P � 0.01 at 13 mmol/liter glu-
cose; P � 0.05 at 22 mmol/liter glucose). IH tended to
decrease DI in WF during the second step of the clamp and
had no effect on DI in dr-BB rats (Fig. 2).

Supplemental Table 2 shows the whole clamp C-pep-
tide levels (in logarithmic form) after adjustment for in-
sulin sensitivity [ln(M/I)]. IH treatment significantly de-
creased adjusted ln(C-peptide) only in dp-BB rats. Thus,
also using this conservative method of adjustment of in-
sulin secretion for insulin sensitivity, the results were sim-
ilar to those obtained using the DI method.

Hyperinsulinemic-euglycemic clamp
Ginf during the last 30 min of the 2-h hyperinsulinemic-

euglycemic clamp is an indicator of whole body insulin
sensitivity. IH infusion significantly decreased Ginf in dp-
BB, dr-BB, and WF rats compared with SAL infusion (Fig.
3A). Plasma insulin levels during the last 30 min of the

clamp did not differ between SAL and
IH in all groups (Fig. 3B). M/I index,
calculated by dividing Ginf by insulin,
was significantly reduced by IH infu-
sion in all groups. dp-BB rats infused
with IH had the greatest decrease in M/I
(52%) compared with 30% in WF and
28% in dr-BB rats (Fig. 3C).

Because the M/I index derived from
the hyperinsulinemic-euglycemic clamp is
a better indicator of insulin sensitivity
than that from the hyperglycemic
clamp, we also calculated DI from the
M/I index of the hyperinsulinemic-eu-
glycemic clamp. We used group aver-
ages, and we could not calculate any SE,
because the hyperinsulinemic and the
hyperglycemic clamps were performed
on separate animals. This had to be
done because, although we commonly
perform both clamps in the same sub-
ject in humans (36), it is too invasive to
perform prolonged infusions followed
by both clamps in the same small ani-
mal (i.e. there is a high experimental
drop-out and the results the clamp per-
formed last are heavily affected by
stress). DI, calculated as the product of
M/I index (group averages for hyperin-
sulinemic clamp) and C-peptide (group
averages for hyperglycemic clamp), was
lowered by IH infusion in dp-BB at both
13 and 22 mmol/liter glucose. IH infu-
sion in WF lowered DI at 22 mmol/liter

glucose but to a much lesser extent than that observed in
IH-infused dp-BB rats. IH infusion in dr-BB rats did not
decrease DI (Supplemental Fig. 2).

Insulin secretion in isolated islets
Insulin secretion at 2.8 and 6.5 mmol/liter glucose did

not differ between SAL- and IH-infused rats in all groups.
In dp-BB rats, insulin secretion was significantly impaired
by IH infusion at 13 mmol/liter (P � 0.05) and 22 mmol/
liter (P � 0.001) glucose. In contrast, no impairment in
insulin secretion at 13 and 22 mmol/liter glucose was ob-
served in dr-BB and WF rats infused with IH compared
with SAL infusion (Fig. 4). IH infusion did not signifi-
cantly affect islet insulin content in any group. However,
WF had low insulin content (in nanograms per islet) com-
pared with dr-BB and dp-BB rats (dp-BB SAL, 138.9 �

30.1, n � 5; dp-BB IH, 123.0 � 4.1, n � 6; dr-BB SAL,

FIG. 3. Ginf (A), plasma insulin (B), and sensitivity index (C) during a hyperinsulinemic-
euglycemic clamp in dp-BB, dr-BB, and WF rats infused for 48 h with IH or SAL. Data are
mean � SE. Number of animals studied (n), four to seven per group. Ginf (last 30 min) was
reduced by IH in dp-BB, dr-BB, and WF rats (A). Similar levels of insulin (last 30 min) were
achieved during the hyperinsulinemic-euglycemic clamp (B). Sensitivity index, calculated by
dividing Ginf by insulin, was reduced to the greatest extent by IH in dp-BB rats (�52%)
compared with dr-BB and WF rats (�30%) (C). A, Units of sensitivity index, �mol·kg�1�min�1

glucose infusion per pmol/liter insulin. *, P � 0.05 vs. SAL; **, P � 0.01 vs. SAL.
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148.5 � 14.4, n � 4; dr-BB IH, 188.8 � 16.5, n � 4; WF
SAL, 39.2 � 16.2, n � 6; and WF IH, 22.7 � 5.4, n � 5).

Effect of NAC
To determine whether the �-cell dysfunction induced

by IH infusion in dp-BB rats is oxidative stress dependent,
we coinfused the antioxidant NAC with IH. NAC com-
pletely prevented the impairment in GSIS induced by IH in
islets of dp-BB rats (P � 0.001 at both 13 and 22 mmol/
liter glucose). NAC alone without IH infusion did not have
any significant effect (Fig. 4). NAC also prevented IH-
induced �-cell dysfunction in dp-BB rats in vivo during the
hyperglycemic clamp (Supplemental Fig. 3).

Islet cytokine mRNA levels
IH infusion increased mRNA ex-

pression of proinflammatory (IL-1�

and TNF-�), and type 1 [interferon
(IFN)-�] cytokines in islets of dp-BB,
but not those of dr-BB or WF, rats.
Likewise, the mRNA of monocyte che-
moattractant protein-1 (MCP-1) was
elevated by IH in dp-BB, but not dr-BB
or WF, rats. This was similarly ob-
served for the mRNA of type 2 cyto-
kines (IL-4, IL-6, and IL-10), IL-1� re-
ceptor antagonist, a natural inhibitor of
IL-1�, and TGF-�, a type 3 cytokine,
which can suppress secretion of type 1
cytokines. The mRNA expression of
cytokine-inducible isoform of NOS
(iNOS) and cytokine-inducible isoform
of cyclooxygenase-2 (COX-2), were
also increased by IH in dp-BB rats (for
iNOS, one in six detectable for dp-SAL;
three in six detectable for IH) but not
dr-BB or WF rats. Coinfusion of the an-
tioxidant NAC with IHindp-BBratsdid
not appear to reduce the mRNA of pro-
inflammatory cytokines, with the excep-
tion of IFN-�, where mRNA was detect-
able in only one of six samples. NAC did
not significantly affect MCP-1 and
COX-2 mRNA. NAC did appear to re-
duce iNOSmRNA,becausethiswasonly
detectable in one of six samples (Fig. 5).

Plasma cytokine levels
IH infusion elevated plasma levels of

MCP-1 and IL-10 compared with SAL
infusion in dp-BB rats. No other
changes in plasma cytokine levels were
noted between SAL and IH infusion in
dp-BB, dr-BB, or WF rats. Interestingly,

dp-BB rats had lower plasma IFN-� levels compared with
dr-BB or WF rats (Table 2). This is in accordance with the
previously described findings that dp-BB rats have lower
IFN-� production in the gut lymphoid tissue (37). dp-BB
rats also had lower levels of the type 2 (antiinflammatory)
cytokines IL-4 and IL-10 (the SAL group), consistent with
their susceptibility to autoimmune diabetes (38).

Pancreas histology
Figure 6A shows a typical islet from control WF rats.

Islets from dr-BB rats (Fig. 6B) were similar, i.e. there were
no signs of insulitis in any of the rats. However, all dp-BB

FIG. 4. GSIS in isolated islets of dp-BB, dr-BB, and WF rats infused for 48 h with IH or SAL.
Data are mean � SE, n � 5-12 per group; n represents the number of rats (each studied at all
glucose concentrations in triplicate). IH had no effects on insulin release at 2.8 and 6.5 mmol/
liter glucose, except in dp-BB at 6.5 mmol/liter. IH significantly impaired GSIS at 13 and 22
mmol/liter glucose in dp-BB rats. Coinfusion of the antioxidant NAC with IH completely
restored GSIS (A). In contrast, IH did not impair GSIS in dr-BB or WF rats (B and C).
*, P � 0.05 vs. SAL; ***, P � 0.001 vs. SAL.
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rats had mononuclear infiltration of some islets (i.e. insu-
litis) (Fig. 6D), whereas other islets of the same rats ap-
peared to be intact (Fig. 6C). Figure 6E shows that the
mononuclear cells present in the islets of dp-BB rats were
positive for CD3 (lymphocytic marker). Figure 6F shows
the insulin staining of an adjacent section, thus confirming
that the accumulation of CD3-positive cells is in islets.
There were no CD3-positive cells in islets of dr-BB or WF
rats (data not shown).

Insulitis tended to be reduced by IH in dp-BB rats, al-
though this did not reach statistical significance (Fig. 6G).
The ratio of the number of islets that have insulitis (cate-
gorized by insulitis scores 1-4) to the total number of islets

present in the pancreas also tended to be reduced by IH
(Fig. 6H). IH infusion significantly decreased the T lym-
phocyte marker CD3 (dp-BB SAL, 2.96 � 0.38, n � 6;
dp-BB IH, 0.32 � 0.27, n � 5, expressed as average num-
ber of CD3-positive cells per islet; P � 0.001) and tended
to decrease the macrophage marker CD68 (dp-BB SAL,
1.35 � 0.41, n � 6; dp-BB IH, 0.62 � 0.36, n � 5, ex-
pressed as average number of CD68-positive cells per islet)
staining in the islets.

�-Cell area (expressed as percentage of pancreas area)
was significantly increased by IH in dr-BB rats (dr-BB SAL,
0.563 � 0.024%, n � 6, vs. dr-IH, 0.762 � 0.022%, n �
6; P � 0.05) but not dp-BB rats (dp-BB SAL, 0.495 �

FIG. 5. mRNA levels of cytokines and inflammatory markers in isolated islets of dp-BB, dr-BB, and WF rats infused for 48 h with IH or SAL. Data
are mean � SE. The number of rats (n) studied, six per group. Changes in mRNA expression were calculated using difference of cycle threshold
values compared with a housekeeping gene (18S) and expressed relative to SAL controls. IH infusion increased mRNA expression of
proinflammatory (IL-1� and TNF-�) and type 1 (IFN-�) cytokines in islets of dp-BB, but not dr-BB or WF, rats. Likewise, the mRNA of MCP-1 was
elevated by IH in dp-BB, but not dr-BB or WF, rats. This was similarly observed for the mRNA of type 2 cytokines (IL-4, IL-6, and IL-10), IL-1�
receptor antagonist (IL-1Ra), a natural inhibitor of IL-1�, and TGF-�, a type 3 cytokine, which can suppress secretion of type 1 cytokines. The
mRNA expression of cytokine-inducible isoform of NOS (iNOS) and cytokine-inducible isoform of cyclooxygenase COX-2 was also increased by IH in
dp-BB rats (for iNOS, one in six detectable for dp-SAL; three in six detectable for IH) but not dr-BB or WF rats. Coinfusion of the antioxidant NAC
with IH in dp-BB rats did not appear to reduce the mRNA of proinflammatory cytokines, with the exception of IFN-�, where mRNA was detectable
in only one of six samples. NAC did not significantly affect MCP-1 and COX-2 mRNA. NAC did appear to reduce iNOS mRNA, because this was
only detectable in one of six samples. *, P � 0.05 vs. SAL; **, P � 0.01 vs. SAL; ***, P � 0.001 vs. SAL.
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0.075%, n � 9 vs. dp-BB IH, 0.552 � 0.060%, n � 9) or
WF rats (WF SAL, 1.000 � 0.068%, n � 6 vs. WF IH,
0.863 � 0.081%, n � 5). Interestingly, WF rats that had
the lowest islet insulin content (see under Insulin secretion
in isolated islets) had the highest �-cell area, suggesting
that their pancreatic insulin stores were likely similar to
those in the BB rats.

Discussion

We here wished to determine whether the presence of au-
toimmune insulitis, such as that found in the islets of pre-
diabetic dp-BB rats, sensitizes animals to the lipotoxic ef-
fect of fat on �-cell function. Pancreas histology showed
insulitis in dp-BB rats, which was absent in dr-BB and WF
rats. �-Cell function evaluated in vivo by the DI, and ex
vivo in isolated islets, was not significantly affected by
48-h fat infusion in either dr-BB or WF rats but was re-
duced in dp-BB rats. IH infusion elevated plasma and islet
cytokine and chemokine expression only in dp-BB, but not
in dr-BB or WF, rats.

WF rats required a greater IH infusion rate to achieve
a similar FFA elevation as dp-BB and dr-BB rats. This is
presumably because of the previously described higher
levels of lipoprotein lipase activator apolipoprotein-CII
in BB rats (28). WF rats were also significantly smaller
than BB rats. Despite these differences, we chose to use
the WF rats as an additional control group, because
dr-BB rats are not completely normal, because they de-
velop autoimmune diabetes after depletion of regula-
tory RT6-positive T cells (2).

Plasma glucose and insulin levels did not differ during
the 48-h infusion between IH- or SAL-infused rats in all
groups. This suggests that the impairment in �-cell func-
tion in dp-BB rats infused with IH is likely due to FFA

elevation and not to glucotoxicity and/or an increase in
insulin demand. This is however not to say that the im-
pairment in �-cell function in dp-BB rats is specific for fat.
It is likely that a similar effect would be seen with sustained
hyperglycemia, in which inflammation has also been im-
plicated (39).

The relationship between insulin sensitivity and insulin
secretion is hyperbolic, so that the DI, which is a product
of insulin sensitivity and insulin secretion, remains con-
stant in subjects with normal glucose tolerance (33, 34).
Prolonged elevation of plasma FFA levels decreased insu-
lin sensitivity, as assessed by the gold standard hyperin-
sulinemic-euglycemic clamp, in all three groups. dr-BB
rats, and to a lesser extent WF rats, appropriately re-
sponded to this decrease in sensitivity by attempting to
elevate their insulin secretion (as assessed by the C-peptide
levels during the hyperglycemic clamp), so that DI did not
change. dp-BB, in contrast, failed to increase insulin se-
cretion despite the induction of insulin resistance by IH,
thus DI of IH-infused dp-BB was reduced compared with
SAL.

DI was calculated using insulin sensitivity from the hy-
perglycemic clamp as well as insulin sensitivity from hy-
perinsulinemic-euglycemic clamps. We also used a statis-
tical method to adjust insulin secretion for insulin
sensitivity. Irrespective of the method used to evaluate
�-cell function in vivo, we obtained similar findings, i.e.
that IH infusion decreases �-cell function only in dp-BB
rats. That IH impaired �-cell function only in dp-BB rats
is also suggested by our ex vivo islet secretion studies. It
should be noted that islets of dp-BB rats tended to differ in
the degree of insulitis (i.e. �40% of islets of SAL-infused
rats and 20% of IH-infused rats had insulitis), and thus, if
islet isolation resulted in the selection of noninfiltrated
islets (which we cannot totally exclude although is not

TABLE 2. Plasma cytokine levels (mean � SE) after 48 h of SAL or IH infusion in dp-BB, dr-BB, and WF rats

MCP-1 (pg/ml) IL-4 (pg/ml) IL-1� (pg/ml) IL-2 (pg/ml) IL-10 (pg/ml) IFN-� (pg/ml)

dp-BB SAL 118 � 21.4 28.6 � 10.7 25.7 � 13.4 417.2 � 168.7 118.9 � 22.4 73.2 � 24.9
n�6 n�4 n�5 n�5 n�4 n�4

dp-BB IH 236.9 � 26.1b 37.4 � 10.3 40.5 � 8.1 309.1 � 70.7 882.6 � 200.5a 26.7 � 15.3
n�6 n�4 n�6 n�5 n�6 n�4

dr-BB SAL 72.9 � 16.0 244.8 � 144.3 14.3 � 2.9 72.5 � 31.6 316.0 � 116.2 510.7 � 169.7
n�5 n�6 n�6 n�6 n�5 n�5

dr-BB IH 140.0 � 38.2 236.4 � 77.8 22.1 � 4.5 195.3 � 111.2 546.2 � 127.5 603.0 � 211.9
n�6 n�5 n�5 n�4 n�6 n�6

WF SAL 189.8 � 87.1 281.6 � 77.2 12.3 � 3.5 446.1 � 102.2 485.3 � 87.4 830.7 � 108.0
n�3 n�6 n�5 n�5 n�6 n�4

WF IH 172.7 � 20.1 201.6 � 72.4 53.2 � 40.4 198.0 � 108.23 752.2 � 170.4 1325.9 � 442.7
n�5 n�6 n�4 n�4 n�6 n�6

TNF-� was measured but was undetectable in all groups.
a P � 0.05 vs. SAL.
b P � 0.01 vs. SAL.
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supported by the cytokine mRNA results), the ex vivo
GSISmaynot fully represent the in vivo condition.Because
of this possible limitation, the ex vivo data should be in-
terpreted in conjunction with the in vivo hyperglycemic
clamp study.

Our results suggest that insulitis predisposes dp-BB is-
lets to fat-induced increase in cytokines and chemokines,
presumably because of increased production by infiltrat-
ing inflammatory cells and/or up-regulation of inflamma-
tory pathways in islet cells. The molecular mechanisms
responsible for this up-regulation remain to be investi-
gated, although activation of nuclear factor �B (NF-�B)
and other transcription factors induced in inflammation,
such as c-Jun, is likely. In INS-1 cells, both fatty acids and
cytokines activated NF-�B in one study (40), although this

was not confirmed in another study
(41). Fatty acids interact with Toll-like
receptors 2 and 4, which are expressed
in islets (16) and activate NF-�B (42). In
fact, Toll-like receptor 2-deficient mice
are protected from �-cell dysfunction
induced by high-fat diet (43). Fatty ac-
ids also induce oxidative stress (27),
which is a known activator of NF-�B.
However, with the exception of IFN-�,
coinfusion of NAC did not prevent this
cytokine up-regulation. This suggests
that this up-regulation is mainly up-
stream or independent of oxidative
stress.

In contrast, the decrease in �-cell
function appears to be mainly due to
oxidative stress, because it is prevented
by NAC. It is possible that fat increases
cytokine production in islets to further
increase oxidative stress in islets.
Sources of oxidative stress contributed
by up-regulation of inflammatory path-
ways may include increased activity of
the enzymes iNOS and COX-2, whose
mRNA expression levels are increased
by IH infusion. Another possibility is
that fat is a substrate for cytokine-in-
duced free radical production (e.g. lipid
peroxidation). It has been well estab-
lished that �-cells are especially vulner-
able to oxidative stress due to their low
antioxidant capacity (44). Oxidative
stress has been clearly shown to impair
�-cell function (45) and to trigger �-cell
death (46). Our results are in accor-
dance with those of Shimabukuro et al.

(17), who showed that the toxicity of cytokines is en-
hanced in fat rich islets, and those of Aarnes et al. (18),
who showed that exposure to FFA enhances the toxicity of
cytokines in INS-1 �-cell lines.

The observation of increased islet mRNA expression of
cytokines and chemokines is consistent with our findings
of plasma cytokine measurements, which showed that IH
infusion increases MCP-1 and IL-10 levels (it is of note
that although other cytokines were not increased by IH,
this may be due to the difficulty of assaying cytokines, such
as IL-1�, in plasma) (47). However, unexpectedly, we
found that insulitis tended to be lower in IH-infused dp-BB
rats. The mechanism for this is unclear. Previously, it has
been reported that IH infusion decreases chemotactic and
random migration of leukocytes (48, 49), possibly by in-

FIG. 6. Representative photographs of islets of WF (A), dr-BB (B), and dp-BB rats (C and D)
(magnification, �400). The islet of the dp-BB rat shown in D is infiltrated with mononuclear
cells; however, the islet from the same rat in C appears to be intact, as are all islets of dr-BB
rats (B) or WF rats (A). E and F, Infiltrated islets of dp-BB rats stained for CD3 (E) and insulin (F)
in adjacent sections (magnification, �200). CD3-positive cells were found in infiltrated islets
of dp-BB rats. G, IH infusion tended to lower average insulitis score in dp-BB rats, although
this was not significant. H, Ratio of the number of islets that have insulitis (categorized by
insulitis scores 1-4) to the total number of islets present in the pancreas of dp-BB rats. G and
H, Data are mean � SE. Number of animals studied (n), five to nine per group.
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ducing alterations in the plasma membrane (50). Thus, it
is possible that IH leads to decreased chemotactic migra-
tion of these cells to the islets, perhaps due to its n-3 fatty
acids content (51), and thus exerts some antiinflammatory
effects. Indeed, IH increased both type 1 and type 2 cyto-
kines in plasma and islets, which is consistent with both
inflammatory and antiinflammatory effects. Another pos-
sibility is that IH is increasing systemic inflammation, as
suggested by elevated plasma MCP-1 levels with IH,
which would partially remove the chemotactic gradient
with respect to islets, and this would lead to a reduced
attraction of immune cells to islets. How a decreased num-
ber of immune cells in the islets can coexist with increased
cytokine and chemokine expression is unclear. One pos-
sibility is that IH increases the activation state of the im-
mune cells (52, 53), despite decreasing their total number.
One study has suggested that the chemokine MCP-1
mainly attracts activated macrophage (54). Also, studies
performed by some of us in humans indicate that both
glucose and fat increase ROS production and NF-�B ac-
tivation in polymorphonuclear leukocytes and mononu-
clear cells (55-57). Another possibility may be that other
islet cell types than immune cells, such as �-cells (58-61)
and/or endothelial and ductal cells (62), are producing
these cytokines and chemokines. Future studies are needed
to investigate these possibilities.

Notably, in this study, IH did not alter �-cell function
in dr-BB or WF rats. Previous studies from our group have
shown that infusion of oleate or olive oil induced �-cell
dysfunction in islets of normal Wistar rats, an effect pre-
vented by antioxidants (27). IH was less effective than
oleate (26), causing only a modest impairment in �-cell
function in Wistar rats, a strain that is bigger than the WF
and dr-BB rats used in the present study. We have previ-
ously shown that obesity predisposes �-cells to lipid-in-
duced dysfunction (63, 64). The reason for the greater
effect of oleate or olive oil than Intralipid is not clear but
may be related to a greater inflammatory effect (or less
antiinflammatory effect) of oleate and olive oil than
Intralipid.

According to our findings, we would expect that diets
high in fat should increase the incidence of type 1 diabetes
in dp-BB rats. However, this has been shown not to be the
case using diets with 10-15% fat in weight (65, 66). Fur-
ther studies may be required with a greater dietary fat
content. However, it should be pointed out that the BB rat
is anextrememodelof type1diabetes,which is suitable for
demonstrating subtle impairments in �-cell function but
where environmental factors do not easily increase diabe-
tes incidence. Indeed, fat feeding (35% in kcal) has been
shown to increase the incidence of diabetes in the nono-

bese diabetic mouse (21), which is well known to be a less
extreme model of type 1 diabetes.

In summary, we have shown that autoimmune inflam-
mation sensitizes the �-cell to metabolically induced dys-
function via increased cytokine production and that an-
tioxidants prevent �-cell dysfunction. Our data suggest
that �-cell lipotoxicity should be considered among the
potential processes underlying overweight-induced accel-
eration of type 1 diabetes (accelerator hypothesis).
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