180 research outputs found

    Starvation Induced Cell Death in Autophagy-Defective Yeast Mutants Is Caused by Mitochondria Dysfunction

    Get PDF
    Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants

    Development of an in-vitro model system to investigate the mechanism of muscle protein catabolism induced by proteolysis-inducing factor

    Get PDF
    The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 μM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the ‘chymotrypsin-like’ enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia

    Phage Lambda CIII: A Protease Inhibitor Regulating the Lysis-Lysogeny Decision

    Get PDF
    The ATP-dependent protease FtsH (HflB) complexed with HflKC participates in post-translational control of the lysis-lysogeny decision of bacteriophage lambda by rapid degradation of lambda CII. Both phage-encoded proteins, the CII transcription activator and the CIII polypeptide, are required for efficient lysogenic response. The conserved CIII is both an inhibitor and substrate of FtsH. Here we show that the protease inhibitor CIII is present as oligomeric amphipathic α helical structures and functions as a competitive inhibitor of FtsH by preventing binding of the CII substrate. We identified single alanine substitutions in CIII that abolish its activity. We characterize a dominant negative effect of a CIII mutant. Thus, we suggest that CIII oligomrization is required for its function. Real-time analysis of CII activity demonstrates that the effect of CIII is not seen in the absence of either FtsH or HflKC. When CIII is provided ectopically, CII activity increases linearly as a function of the multiplicity of infection, suggesting that CIII enhances CII stability and the lysogenic response. FtsH function is essential for cellular viability as it regulates the balance in the synthesis of phospholipids and lipopolysaccharides. Genetic experiments confirmed that the CIII bacteriostatic effects are due to inhibition of FtsH. Thus, the early presence of CIII following infection stimulates the lysogenic response, while its degradation at later times ensures the reactivation of FtsH allowing the growth of the established lysogenic cell

    Peripheral artery disease assessed by ankle-brachial index in patients with established cardiovascular disease or at least one risk factor for atherothrombosis - CAREFUL Study: A national, multi-center, cross-sectional observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the presence of peripheral artery disease (PAD) via the ankle brachial index (ABI) in patients with known cardiovascular and/or cerebrovascular diseases or with at least one risk factor for atherothrombosis.</p> <p>Methods</p> <p>Patients with a history of atherothrombotic events, or aged 50-69 years with at least one cardiovascular risk factor, or > = 70 years of age were included in this multicenter, cross-sectional, non-interventional study (DIREGL04074). Demographics, medical history, physical examination findings, and physician awareness of PAD were analyzed. The number of patients with low ABI (< = 0.90) was analyzed.</p> <p>Results</p> <p>A total of 530 patients (mean age, 63.4 ± 8.7 years; 50.2% female) were enrolled. Hypertension and dyslipidemia were present in 88.7% and 65.5% of patients, respectively. PAD-related symptoms were evident in about one-third of the patients, and at least one of the pedal pulses was negative in 6.5% of patients. The frequency of low ABI was 20.0% in the whole study population and 30% for patients older than 70 years. Older age, greater number of total risk factors, and presence of PAD-related physical findings were associated with increased likelihood of low ABI (<it>p </it>< 0.001). There was no gender difference in the prevalence of low ABI, PAD symptoms, or total number of risk factors. Exercise (33.6%) was the most common non-pharmacological option recommended by physicians, and acetylsalicylic acid (ASA) (45.4%) was the most frequently prescribed medication for PAD.</p> <p>Conclusion</p> <p>Our results indicate that advanced age, greater number of total risk factors and presence of PAD-related physical findings were associated with increased likelihood of low ABI. These findings are similar to those reported in similar studies of different populations, and document a fairly high prevalence of PAD in a Mediterranean country.</p

    Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality - A meta-analysis

    Get PDF
    CONTEXT: Prediction models to identify healthy individuals at high risk of cardiovascular disease have limited accuracy. A low ankle brachial index (ABI) is an indicator of atherosclerosis and has the potential to improve prediction. OBJECTIVE: To determine if the ABI provides information on the risk of cardiovascular events and mortality independently of the Framingham risk score (FRS) and can improve risk prediction. DATA SOURCES: Relevant studies were identified. A search of MEDLINE (1950 to February 2008) and EMBASE (1980 to February 2008) was conducted using common text words for the term ankle brachial index combined with text words and Medical Subject Headings to capture prospective cohort designs. Review of reference lists and conference proceedings, and correspondence with experts was conducted to identify additional published and unpublished studies. STUDY SELECTION: Studies were included if participants were derived from a general population, ABI was measured at baseline, and individuals were followed up to detect total and cardiovascular mortality. DATA EXTRACTION: Prespecified data on individuals in each selected study were extracted into a combined data set and an individual participant data meta-analysis was conducted on individuals who had no previous history of coronary heart disease. RESULTS: Sixteen population cohort studies fulfilling the inclusion criteria were included. During 480,325 person-years of follow-up of 24,955 men and 23,339 women, the risk of death by ABI had a reverse J-shaped distribution with a normal (low risk) ABI of 1.11 to 1.40. The 10-year cardiovascular mortality in men with a low ABI (< or = 0.90) was 18.7% (95% confidence interval [CI], 13.3%-24.1%) and with normal ABI (1.11-1.40) was 4.4% (95% CI, 3.2%-5.7%) (hazard ratio [HR], 4.2; 95% CI, 3.3-5.4). Corresponding mortalities in women were 12.6% (95% CI, 6.2%-19.0%) and 4.1% (95% CI, 2.2%-6.1%) (HR, 3.5; 95% CI, 2.4-5.1). The HRs remained elevated after adjusting for FRS (2.9 [95% CI, 2.3-3.7] for men vs 3.0 [95% CI, 2.0-4.4] for women). A low ABI (< or = 0.90) was associated with approximately twice the 10-year total mortality, cardiovascular mortality, and major coronary event rate compared with the overall rate in each FRS category. Inclusion of the ABI in cardiovascular risk stratification using the FRS would result in reclassification of the risk category and modification of treatment recommendations in approximately 19% of men and 36% of women. CONCLUSION: Measurement of the ABI may improve the accuracy of cardiovascular risk prediction beyond the FRS

    The UBA-UIM Domains of the USP25 Regulate the Enzyme Ubiquitination State and Modulate Substrate Recognition

    Get PDF
    USP25m is the muscle isoform of the deubiquitinating (DUB) enzyme USP25. Similarly to most DUBs, data on USP25 regulation and substrate recognition is scarce. In silico analysis predicted three ubiquitin binding domains (UBDs) at the N-terminus: one ubiquitin-associated domain (UBA) and two ubiquitin-interacting motifs (UIMs), whereas no clear structural homology at the extended C-terminal region outside the catalytic domains were detected. In order to asses the contribution of the UBDs and the C-terminus to the regulation of USP25m catalytic activity, ubiquitination state and substrate interaction, serial and combinatorial deletions were generated. Our results showed that USP25m catalytic activity did not strictly depend on the UBDs, but required a coiled-coil stretch between amino acids 679 to 769. USP25 oligomerized but this interaction did not require either the UBDs or the C-terminus. Besides, USP25 was monoubiquitinated and able to autodeubiquitinate in a possible loop of autoregulation. UBDs favored the monoubiquitination of USP25m at the preferential site lysine 99 (K99). This residue had been previously shown to be a target for SUMO and this modification inhibited USP25 activity. We showed that mutation of K99 clearly diminished USP25-dependent rescue of the specific substrate MyBPC1 from proteasome degradation, thereby supporting a new mechanistic model, in which USP25m is regulated through alternative conjugation of ubiquitin (activating) or SUMO (inhibiting) to the same lysine residue (K99), which may promote the interaction with distinct intramolecular regulatory domains

    Role of Conserved Non-Coding Regulatory Elements in LMW Glutenin Gene Expression

    Get PDF
    Transcriptional regulation of LMW glutenin genes were investigated in-silico, using publicly available gene sequences and expression data. Genes were grouped into different LMW glutenin types and their promoter profiles were determined using cis-acting regulatory elements databases and published results. The various cis-acting elements belong to some conserved non-coding regulatory regions (CREs) and might act in two different ways. There are elements, such as GCN4 motifs found in the long endosperm box that could serve as key factors in tissue-specific expression. Some other elements, such as the AACA/TA motifs or the individual prolamin box variants, might modulate the level of expression. Based on the promoter sequences and expression characteristic LMW glutenin genes might be transcribed following two different mechanisms. Most of the s- and i-type genes show a continuously increasing expression pattern. The m-type genes, however, demonstrate normal distribution in their expression profiles. Differences observed in their expression could be related to the differences found in their promoter sequences. Polymorphisms in the number and combination of cis-acting elements in their promoter regions can be of crucial importance in the diverse levels of production of single LMW glutenin gene types

    Transcriptional and Proteomic Analysis of the Aspergillus fumigatus ΔprtT Protease-Deficient Mutant

    Get PDF
    Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus

    Zds2p Regulates Swe1p-dependent Polarized Cell Growth in Saccharomyces cerevisiae via a Novel Cdc55p Interaction Domain

    Get PDF
    A C-terminal region in Zds2p (ZH4) is required for regulation of Swe1p-dependent polarized cell growth and this region is necessary and sufficient for interaction with protein phosphatase 2A regulatory subunit, Cdc55p. Our results indicate that the Zds proteins regulate the Swe1p-dependent G2/M checkpoint in a CDC55-dependent manner
    corecore