332 research outputs found

    Seasonal Movements, Migratory Behavior, and Site Fidelity of West Indian Manatees along the Atlantic Coast of the United States as Determined by Radio-telemetry

    Get PDF
    The study area encompassed the eastern coasts of Florida, Georgia, and South Carolina, including inland waterways such as the St. Johns River (Fig. 1). Manatees inhabited the relatively narrow band of water that lies between the barrier beaches and the mainland, occasionally venturing into the ocean close to shore. Between Miami and Fernandina Beach, Florida, 19 inlets provided manatees with corridors between the intracoastal waters and the Atlantic Ocean; the distance between adjacent inlets averaged 32 km(SD = 24 km) and varied from 3 to 88 km. Habitats used by manatees along this 900-km stretch ofcoastline varied widely and included estuaries, lagoons, rivers and creeks, shallow bays and sounds, and ocean inlets. Salinities in most areas were brackish, but ranged from completely fresh to completely marine. The predominant communities of aquatic vegetation also varied geographically and with salinity: seagrass meadows and mangrove swamps in brackish and marine waters along the southern half of peninsular Florida; salt marshes in northeastern Florida and Georgia; benthic macroalgae in estuarine and marine habitats; and a variety of submerged, floating, and emergent vegetation in freshwater rivers, canals, and streams throughout the region. Radio-telemetry has been used successfully to track manatees in other regions ofFlorida (Bengtson 1981, Powell and Rathbun 1984, Lefebvre and Frohlich 1986, Rathbun et al. 1990) and Georgia (Zoodsma 1991), but these early studies relied primarily on conventional VHF (very high frequency) transmitters and were limited in their spatial and temporal scope (see O'Shea and Kochman 1990 for overview). Typically, manatees were tagged at a thermal refuge in the winter and then tracked until the tag detached, usually sometime between the spring and fall of the same year. Our study differs from previous research on manatee movements in several important respects. First, we relied heavily on data from satellite-monitored transmitters using the Argos system, which yielded a substantially greater number of locations and more systematic collection of data compared to previous VHF tracking studies (Deutsch et al. 1998). Second, our tagging and tracking efforts encompassed the entire range of manatees along the Atlantic coast, from the Florida Keys to South Carolina, so inferences were not limited to a small geographic area. Third, we often used freshwater to lure manatees to capture sites, which allowed tagging in all months of the year; this provided more information about summer movement patterns than had previous studies which emphasized capture and tracking at winter aggregations. Finally, the study spanned a decade, and success in retagging animals and in replacing transmitters allowed long-term tracking ofmany individuals. This provided the opportunity to investigate variation in seasonal movements, migratory behavior, and site fidelity across years for individual manatees. (254 page document.

    Conduction band offset in InAs/GaAs self-organized quantum dots measured by deep level transient spectroscopy

    Full text link
    The heterostructure conduction band offset, ΔEc,ΔEc, in InAs/GaAs self-organized quantum dots has been measured by deep level transient spectroscopy. Measurements were made with Au–Al0.18Ga0.82AsAu–Al0.18Ga0.82As Schottky diodes in which the multilayer dots are embedded in the ternary layer. The estimated value of the band offset ΔEc = 341±30 meV.ΔEc=341±30meV. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69734/2/APPLAB-76-18-2571-1.pd

    Raster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectors

    Full text link
    We demonstrate normal incidence infrared imaging with quantum dot infrared photodetectors using a raster-scan technique. The device heterostructure, containing multiple layers of InAs/GaAs self-organized quantum dots, were grown by molecular-beam epitaxy. Individual devices have been operated at temperatures as high as 150 K and, at 100 K, are characterized by λpeak = 3.72 μm,λpeak=3.72μm, Jdark = 6×10−10 A/cm2Jdark=6×10−10A/cm2 for a bias of 0.1 V, and D∗ = 2.94×109 cm Hz1/2/WD∗=2.94×109cmHz1/2/W at a bias of 0.2 V. Raster-scan images of heated objects and infrared light sources were obtained with a small (13×13)(13×13) interconnected array of detectors (to increase the photocurrent) at 80 K. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70691/2/APPLAB-80-18-3265-1.pd

    RAPID COMMUNICATION: Lateral hopping conductivity and large negative magnetoresistance in InAs/AlGaAs self-organized quantum dots

    Full text link
    We report experimental studies on lateral transport in self-organized quantum dots. We find that below 100 K, conduction occurs through interdot hopping and that experimental results are described quite well by a variable-range hopping model. In the hopping regime, the in-plane conductance varies as G = G0exp [(-T0/T)1/3], and T0 is found to be 7100-9400 K. We have also observed a large negative magnetoresistance in this structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48914/2/d215l1.pd

    Ring closing reaction in diarylethene captured by femtosecond electron crystallography

    Get PDF
    The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond structural changes associated with the formation of an open-ring excited-state intermediate were resolved. The key motion is the rotation of the thiophene rings, which significantly decreases the distance between the reactive carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These direct observations of the molecular motions driving an organic chemical reaction were only made possible through the development of an ultrabright electron source to capture the atomic motions within the limited number of sampling frames and the low data acquisition rate dictated by the intrinsically poor thermal conductivity and limited photoreversibility of organic materials

    Impact of renal function on clinical outcomes after PCI in ACS and stable CAD patients treated with ticagrelor: a prespecified analysis of the GLOBAL LEADERS randomized clinical trial

    Get PDF
    Background: Impaired renal function (IRF) is associated with increased risks of both ischemic and bleeding events. Ticagrelor has been shown to provide greater absolute reduction in ischemic risk following acute coronary syndrome (ACS) in those with versus without IRF. Methods: A pre-specified sub-analysis of the randomized GLOBAL LEADERS trial (n = 15,991) comparing the experimental strategy of 23-month ticagrelor monotherapy (after 1-month ticagrelor and aspirin dual anti-platelet therapy [DAPT]) with 12-month DAPT followed by 12-month aspirin after percutaneous coronary intervention (PCI) in ACS and stable coronary artery disease (CAD) patients stratified according to IRF (glomerular filtration rate < 60 ml/min/1.73 m2). Results: At 2 years, patients with IRF (n = 2171) had a higher rate of the primary endpoint (all-cause mortality or centrally adjudicated, new Q-wave myocardial infarction [MI](hazard ratio [HR] 1.64, 95% confidence interval [CI] 1.35–1.98, padj = 0.001), all-cause death, site-reported MI, all revascularization and BARC 3 or 5 type bleeding, compared with patients without IRF. Among patients with IRF, there were similar rates of the primary endpoint (HR 0.82, 95% CI 0.61–1.11, p = 0.192, pint = 0.680) and BARC 3 or 5 type bleeding (HR 1.10, 95% CI 0.71–1.71, p = 0.656, pint = 0.506) in the experimental versus the reference group. No significant interactions were seen between IRF and treatment effect for any of the secondary outcome variables. Among ACS patients with IRF, there were no between-group differences in the rates of the primary endpoint or BARC 3 or 5 type bleeding; however, the rates of the patient-oriented composite endpoint (POCE) of all-cause death, any stroke, MI, or revascularization (pint = 0.028) and net adverse clinical events (POCE and BARC 3 or 5 type bleeding) (pint = 0.045), were lower in the experimental versus the reference group. No treatment effects were found in stable CAD patients categorized according to presence of IRF. Conclusions: IRF negatively impacted long-term prognosis after PCI. There were no differential treatment effects found with regard to all-cause death or new Q-wave MI after PCI in patients with IRF treated with ticagrelor monotherapy. Clinical trial regis
    • …
    corecore