3,988 research outputs found

    Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2

    Get PDF
    We report on the observation of nanoscale density fluctuations in 2 μm thick amorphous SiO₂ layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 × 10¹² ions/cm², where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track “annihilation” process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.The authors acknowledge the Australian Research Council and the Australian Synchrotron Research Program for financial support and thank the staff at the ANU Heavy Ion facility for their continued technical assistance. O.P., F.D., and K.N. acknowledge financial support from the Academy of Finland under its Centre of Excellence program as well as the OPNA project, and grants of computer capacity from CSC

    On the mechanism of the shape elongation of embedded nanoparticles

    Get PDF
    The mechanism of the shape elongation of metal nanoparticles (NPs) in silica, which is induced under swift heavy ion irradiation, is discussed with comparing the two candidates: (i) the synergy between the ion hammering and the transient melting of NPs by the inelastic thermal spike and (ii) the thermal pressure and flow model. We show that three experimental results are inconsistent with (i). The latter is supported by two-temperature molecular dynamics simulations, which simulate not only the atomic motions but also the local electron temperatures. A remarkable correlation was observed between the temporal evolution of the silica density around the ion trajectory and that of the aspect ratio of the NP later than similar to 1 ps after the ion impact, while no correlation was observed earlier than similar to 1 ps, even under the assumption of the instantaneous energy deposition.Peer reviewe

    High precision fundamental constants at the TeV scale

    Full text link
    This report summarizes the proceedings of the 2014 Mainz Institute for Theoretical Physics (MITP) scientific program on "High precision fundamental constants at the TeV scale". The two outstanding parameters in the Standard Model dealt with during the MITP scientific program are the strong coupling constant αs\alpha_s and the top-quark mass mtm_t. Lacking knowledge on the value of those fundamental constants is often the limiting factor in the accuracy of theoretical predictions. The current status on αs\alpha_s and mtm_t has been reviewed and directions for future research have been identified.Comment: 57 pages, 24 figures, pdflate

    High-precision αs\alpha_s measurements from LHC to FCC-ee

    Full text link
    This document provides a writeup of all contributions to the workshop on "High precision measurements of αs\alpha_s: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling αs\alpha_s from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) τ\tau decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in e±e^\pmp DIS and γ\gamma-p photoproduction, (ix) photon structure function in γ\gamma-γ\gamma, (x) event shapes and (xi) jet cross sections in e+ee^+e^- collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in e+ee^+e^- collisions at the Future Circular Collider (FCC-ee) with O\cal{O}(1--100 ab1^{-1}) integrated luminosities yielding 1012^{12} Z bosons and jets, and 108^{8} W bosons and τ\tau leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, αs(mZ)\alpha_s(m_Z) = 0.1177 ±\pm 0.0013, is about 1\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the αs\alpha_s uncertainty should be possible, mostly thanks to the huge Z and W data samples available.Comment: 135 pages, 56 figures. CERN-PH-TH-2015-299, CoEPP-MN-15-13. This document is dedicated to the memory of Guido Altarell

    Hadron Spectroscopy: Theory and Experiment

    Get PDF
    Many new results on hadron spectra have been appearing in the past few years thanks to improved experimental techniques and searches in new channels. New theoretical techniques including refined methods of lattice QCD have kept pace with these developments. Much has been learned about states made of both light (u, d, and s) and heavy (c, b) quarks. The present review treats light-quark mesons, glueballs, hybrids, particles with a single c or b quark, charmonium, and bottomonium states. Some prospects for further study are noted.Comment: 29 pages, 9 figures, to be published in Journal of Physics G. Further updating of reference

    Latent ion tracks in amorphous silicon

    Get PDF
    We present experimental evidence for the formation of ion tracks in amorphous Si induced by swift heavy-ion irradiation. An underlying core-shell structure consistent with remnants of a high-density liquid structure was revealed by small-angle x-ray scattering and molecular dynamics simulations. Ion track dimensions differ for as-implanted and relaxed Si as attributed to differentmicrostructures andmelting temperatures. The identification and characterization of ion tracks in amorphous Si yields new insight into mechanisms of damage formation due to swift heavy-ion irradiation in amorphous semiconductors

    Tests of model of color reconnection and a search for glueballs using gluon jets with a rapidity gap

    Full text link
    Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e+e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We conclude that color reconnection as implemented by these two models is disfavored. The signal from the Herwig color reconnection model is less clear and we do not obtain a definite conclusion concerning this model. In a separate study, we follow recent theoretical suggestions and search for glueball-like objects in the leading part of the gluon jets. No clear evidence is observed for these objects.Comment: 42 pages, 18 figure
    corecore