879 research outputs found

    Influence of Sowing, Nitrogen Nutrition and Weather Conditions on Stand Structure and Yield of Spring Barley

    Get PDF
    The processes of stand structure and yield formation of spring barley were studied under different weather conditions and crop management. The multifactorial small-plot trials focused on the combined effect of variety, sowing density and nitrogen nutrition were carried out in two years with contrast weather conditions for yield formation (2011 and 2013). Evaluation of the above-ground biomass and the segmentation of tillers into three groups was conducted in four growth stages (BBCH 25, 31, 39 and 75). The performed analyses confirmed that for effective use of inputs and high yield, it is important to create a sufficient number of strong tillers at the beginning of vegetation. In year with low proportion of strong tillers at the end of tillering (2013), the differentiation of tillers is delayed and their productivity decreases. In this year therefore, yield formation is shifted from the number of spikes to the number of grains in a spike. The comparison of barley genotypes revealed that high yield plasticity can be obtained especially in the variety Bojos, which is able to compensate effectively the changes in spike number by increased grain number in a spike. This variety is also able to create a high proportion of strong tillers even under unfavourable conditions. This knowledge could help to improve the breeding and management strategy in spring barley for the expected weather conditions in the near future, especially higher temperatures in early spring

    A Successful Infusion Process for Enabling Lunar Exploration Technologies

    Get PDF
    The NASA Vision for Space Exploration begins with a more reliable flight capability to the International Space Station and ends with sending humans to Mars. An important stepping stone on the path to Mars encompasses human missions to the Moon. There is little doubt throughout the stakeholder community that new technologies will be required to enable this Vision. However, there are many factors that influence the ability to successfully infuse any technology including the technical risk, requirement and development schedule maturity, and, funds available. This paper focuses on effective infusion processes that have been used recently for the technologies in development for the lunar exploration flight program, Constellation. Recent successes with Constellation customers are highlighted for the Exploration Technology Development Program (ETDP) Projects managed by NASA Glenn Research Center (GRC). Following an overview of the technical context of both the flight program and the technology capability mapping, the process is described for how to effectively build an integrated technology infusion plan. The process starts with a sound risk development plan and is completed with an integrated project plan, including content, schedule and cost. In reality, the available resources for this development are going to change over time, necessitating some level of iteration in the planning. However, the driving process is based on the initial risk assessment, which changes only when the overall architecture changes, enabling some level of stability in the process

    NASA Propulsion Investments for Exploration and Science

    Get PDF
    The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high specific impulse chemical engine is in development that will add additional capability to performance-demanding space science missions. In summary, the paper provides a survey of current NASA development and risk reduction propulsion investments for exploration and science

    What did we learn from the extraction experiments with bent crystals at the CERN SPS?

    Get PDF
    The feasibility and properties of particle extraction from an accelerator by means of a bent crystal were studied extensively at the CERN SPS. The main results of the experiments are presented. This includes the evidence for multipass extraction of heavy ions. These results are compared with theoretical expectations and computer simulations

    Excitonic photoluminescence linewidths in AlGaAs grown by molecular beam epitaxy

    Full text link
    The linewidths of excitonic transitions were measured in AlxGa1−xAs, grown by molecular beam epitaxy as a function of alloy composition x for values of x≲0.43 using high resolution photoluminescence spectroscopy at liquid helium temperature. The values of the linewidths thus measured are compared with the results of several theoretical calculations in which the dominant broadening mechanism is assumed to be the statistical potential fluctuations caused by the components of the alloy. An increase in the linewidth as a function of x is observed which is in essential agreement with the prediction of the various theoretical calculations. The linewidths of the excitonic transitions in AlxGa1−xAs observed in the present work are the narrowest ever reported in the literature, for example σ=2.1 meV for x=0.36, thus indicating very high quality material.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70175/2/APPLAB-48-11-727-1.pd

    On the energy dependence of proton beam extraction with a bent crystal

    Get PDF
    Proton beam extraction from the CERN SPS by means of a bent silicon crystal is reported at three different energies, 14 GeV, 120 GeV and 270 GeV. The experimental results are compared to computer simulations which contain a sound model of the SPS accelerator as well as the channeling phenomena in bent crystals. The overall energy dependence of crystal assisted proton beam extraction is understood and provides the basis to discuss such a scheme for future accelerators

    Extraction of 22 TeV/c lead ions from the CERN SPS using a bent silicon crystal

    Get PDF
    The extraction of protons from the halo of a circulating beam has been repeatedly demonstrated at the SPS. In a recent experiment a coasting lead ion beam was available at a momentum of 270 GeV/c per charge corresponding to a total momentum of 22 TeV/c per ion and the possibility to extract ultrarelativistic lead ions with a bent crystal could be demonstrated for the first time. We present the experimental challenges, the measurements performed during this experiment and the first results

    Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress

    Get PDF
    The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation ;stress (HRS; defined by high intensities of PAR - 1000 mu mol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley. (C) 2015 Elsevier Masson SAS. All rights reserved.Peer reviewe

    Proton extraction from the CERN SPS using a bent crystal

    Get PDF
    The extraction of high energy particles from a circular accelerator by means of channeling in bent crystals is an attractive alternative to classical extraction schemes, in particular for high energy proton colliders where a classical scheme becomes expensive and incompatible with normal operation this paper reviews the ongoing extraction experiments at the CERN-SPS with bent silicon crystals. it describes the principles of beam extraction by means of a bent crystal and the different extraction schemes used: firs- and multi-pass extraction and the methods to create diffusion. The limitations in tuning the accelerator to the desired impact parameters and crucial items concerning crystal preparation, bending and pre-alignment are discussed. the experimental procedures including an overview of the detection of circulation and extracted beam are given. Finally the paper summarizes the results of these experiments together with ideas for future developments
    corecore