277 research outputs found

    Response of a small-turboshaft-engine compression system to inlet temperature distortion

    Get PDF
    An experimental investigation was conducted into the response of a small-turboshaft-engine compression system to steady-state and transient inlet temperature distortions. Transient temperature ramps range from less than 100 K/sec to above 610 K/sec and generated instantaneous temperatures to 420 K above ambient. Steady-state temperature distortion levels were limited by the engine hardware temperature list. Simple analysis of the steady-state distortion data indicated that a particle separator at the engine inlet permitted higher levels of temperature distortion before onset of compressor surge than would be expected without the separator

    In‐plane photocurrent spectroscopy in GaAs-AlAs superlattices

    Get PDF
    The in‐plane photoconductivity of GaAs‐AlAs superlattices on GaAs substrates is experimentally studied as a function of the incident photon energy at different temperatures and light intensities. Superlattice and substrate are electrically isolated by a thick  Al0.3Ga0.7As barrier but connected through penetrating contacts. Depending on the transport properties of the two subsystems pseudo‐negative photoconductivity can be observed, i.e., at the absorption maximum of the superlattice the photocurrent exhibits a minimum

    Development of semiconductor detectors for fast neutron radiography

    Full text link
    A high-energy neutron detector has been developed using a semiconductor diode fabricated from bulk gallium arsenide wafers with a polyethylene neutron converter layer. Typical thickness of the diode layer is 250 to 300 μm with bias voltages of 30 to 150 volts. Converter thicknesses up to 2030 μm have been tested. GaAs neutron detectors offer many advantages over existing detectors including positional information, directional dependence, gamma discrimination, radiation hardness, and spectral tailoring. Polyethylene-coated detectors have been shown to detect 14 MeV neutrons directly from a D-T neutron generator without interference from gamma rays or scattered neutrons. An array of small diode detectors can be assembled to perform fast neutron radiography with direct digital readout and real-time display of the image produced. In addition, because the detectors are insensitive to gamma rays and low energy neutrons, highly radioactive samples (such as spent nuclear fuel or transuranic waste drums) could be radiographed. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87673/2/1118_1.pd

    Experimental and analytical study of ceramic-coated turbine-tip shroud seals for small turbine engines

    Get PDF
    The results of an experimental and analytical evaluation of ceramic turbine tip shrouds within a small turbine engine operating environment are presented. The ceramic shrouds were subjected to 1001 cycles between idle and high power and steady-state conditions for a total of 57.8 engine hr. Posttest engine inspection revealed mud-flat surface cracking, which was attributed to microcracking under tension with crack penetration to the ceramic and bond coat interface. Sections and micrographs tend to corroborate the thesis. The engine test data provided input to a thermomechanical analysis to predict temperature and stress profiles throughout the ceramic gas-path seal. The analysis predicts cyclic thermal stresses large enough to cause the seal to fail. These stresses are, however, mitigated by inelastic behavior of the shroud materials and by the microfracturing that tensile stresses produce. Microfracturing enhances shroud longevity during early life but provides the failure mechanism during life but provides the failure mechanism during extended life when coupled with the time dependent inelastic materials effects

    Optimal Convergence Rates for Tikhonov Regularization in Besov Scales

    Full text link
    In this paper we deal with linear inverse problems and convergence rates for Tikhonov regularization. We consider regularization in a scale of Banach spaces, namely the scale of Besov spaces. We show that regularization in Banach scales differs from regularization in Hilbert scales in the sense that it is possible that stronger source conditions may lead to weaker convergence rates and vive versa. Moreover, we present optimal source conditions for regularization in Besov scales

    Spatial Modeling of Vesicle Transport and the Cytoskeleton: The Challenge of Hitting the Right Road

    Get PDF
    The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling

    Greedy Solution of Ill-Posed Problems: Error Bounds and Exact Inversion

    Full text link
    The orthogonal matching pursuit (OMP) is an algorithm to solve sparse approximation problems. Sufficient conditions for exact recovery are known with and without noise. In this paper we investigate the applicability of the OMP for the solution of ill-posed inverse problems in general and in particular for two deconvolution examples from mass spectrometry and digital holography respectively. In sparse approximation problems one often has to deal with the problem of redundancy of a dictionary, i.e. the atoms are not linearly independent. However, one expects them to be approximatively orthogonal and this is quantified by the so-called incoherence. This idea cannot be transfered to ill-posed inverse problems since here the atoms are typically far from orthogonal: The ill-posedness of the operator causes that the correlation of two distinct atoms probably gets huge, i.e. that two atoms can look much alike. Therefore one needs conditions which take the structure of the problem into account and work without the concept of coherence. In this paper we develop results for exact recovery of the support of noisy signals. In the two examples in mass spectrometry and digital holography we show that our results lead to practically relevant estimates such that one may check a priori if the experimental setup guarantees exact deconvolution with OMP. Especially in the example from digital holography our analysis may be regarded as a first step to calculate the resolution power of droplet holography

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally
    corecore