130 research outputs found

    3d transition metal doping of semiconducting boron carbides

    Get PDF
    The introduction metallocenes, in particular ferrocene (Fe(η5-C5H5)2), cobaltocene (Co(η5-C5H5)2), and nickelocene (Ni(η5-C5H5)2), together with the carborane source molecule closo-1,2-dicarbadodecaborane, during plasma enhanced chemical vapor deposition, will result in the transition metal doping of semiconducting boron carbides. Here we report using ferrocene to introduce Fe dop¬ants, and a semiconducting boron-carbide homojunction has been fabricated. The diode characteristics are very similar to those fabricated with Co and Ni doping

    Use of linear mixed models for genetic evaluation of gestation length and birth weight allowing for heavy-tailed residual effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The distribution of residual effects in linear mixed models in animal breeding applications is typically assumed normal, which makes inferences vulnerable to outlier observations. In order to mute the impact of outliers, one option is to fit models with residuals having a heavy-tailed distribution. Here, a Student's-<it>t </it>model was considered for the distribution of the residuals with the degrees of freedom treated as unknown. Bayesian inference was used to investigate a bivariate Student's-<it>t </it>(BS<it>t</it>) model using Markov chain Monte Carlo methods in a simulation study and analysing field data for gestation length and birth weight permitted to study the practical implications of fitting heavy-tailed distributions for residuals in linear mixed models.</p> <p>Methods</p> <p>In the simulation study, bivariate residuals were generated using Student's-<it>t </it>distribution with 4 or 12 degrees of freedom, or a normal distribution. Sire models with bivariate Student's-<it>t </it>or normal residuals were fitted to each simulated dataset using a hierarchical Bayesian approach. For the field data, consisting of gestation length and birth weight records on 7,883 Italian Piemontese cattle, a sire-maternal grandsire model including fixed effects of sex-age of dam and uncorrelated random herd-year-season effects were fitted using a hierarchical Bayesian approach. Residuals were defined to follow bivariate normal or Student's-<it>t </it>distributions with unknown degrees of freedom.</p> <p>Results</p> <p>Posterior mean estimates of degrees of freedom parameters seemed to be accurate and unbiased in the simulation study. Estimates of sire and herd variances were similar, if not identical, across fitted models. In the field data, there was strong support based on predictive log-likelihood values for the Student's-<it>t </it>error model. Most of the posterior density for degrees of freedom was below 4. Posterior means of direct and maternal heritabilities for birth weight were smaller in the Student's-<it>t </it>model than those in the normal model. Re-rankings of sires were observed between heavy-tailed and normal models.</p> <p>Conclusions</p> <p>Reliable estimates of degrees of freedom were obtained in all simulated heavy-tailed and normal datasets. The predictive log-likelihood was able to distinguish the correct model among the models fitted to heavy-tailed datasets. There was no disadvantage of fitting a heavy-tailed model when the true model was normal. Predictive log-likelihood values indicated that heavy-tailed models with low degrees of freedom values fitted gestation length and birth weight data better than a model with normally distributed residuals.</p> <p>Heavy-tailed and normal models resulted in different estimates of direct and maternal heritabilities, and different sire rankings. Heavy-tailed models may be more appropriate for reliable estimation of genetic parameters from field data.</p

    Use of robust multivariate linear mixed models for estimation of genetic parameters for carcass traits in beef cattle

    Get PDF
    Assumptions of normality of residuals for carcass evaluation may make inferences vulnerable to the presence of outliers, but heavy-tail densities are viable alternatives to normal distributions and provide robustness against unusual or outlying observations when used to model the densities of residual effects. We compare estimates of genetic parameters by fitting multivariate Normal (MN) or heavy-tail distributions (multivariate Student’s t and multivariate Slash, MSt and MS) for residuals in data of hot carcass weight (HCW), longissimus muscle area (REA) and 12th to 13th rib fat (FAT) traits in beef cattle using 2475 records from 2007 to 2008 from a large commercial operation in Nebraska. Model comparisons using deviance information criteria (DIC) favoured MSt over MS and MN models, respectively. The posterior means (and 95% posterior probability intervals, PPI) of v for the MSt and MS models were 5.89±0.90 (4.35, 7.86) and 2.04±0.18 (1.70, 2.41), respectively. Smaller values of posterior densities of v for MSt and MS models confirm that the assumption of normally distributed residuals is not adequate for the analysis of the data set. Posterior mean (PM) and posterior median (PD) estimates of direct genetic variances were variable with MSt having the highest mean value followed by MS and MN, respectively. Posterior inferences on genetic variance were, however, comparable among the models for FAT. Posterior inference on additive heritabilities for HCW, REA and FAT using MN, MSt and MS models indicated similar and moderate heritability comparable with the literature. Posterior means of genetic correlations for carcass traits were variable but positive except for between REA and FAT, which showed an antagonistic relationship. We have demonstrated that genetic evaluation and selection strategies will be sensitive to the assumed model for residuals

    Use of partial least squares regression to impute SNP genotypes in Italian Cattle breeds

    Get PDF
    Background The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used. Methods Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content. Results In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip. Conclusions Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available

    Collaborative database to track Mass Mortality Events in the Mediterranean Sea

    Get PDF
    Anthropogenic climate change, and global warming in particular, has strong and increasing impacts on marine ecosystems (Poloczanska et al., 2013; Halpern et al., 2015; Smale et al., 2019). The Mediterranean Sea is considered a marine biodiversity hotspot contributing to more than 7% of world\u2019s marine biodiversity including a high percentage of endemic species (Coll et al., 2010). The Mediterranean region is a climate change hotspot, where the respective impacts of warming are very pronounced and relatively well documented (Cramer et al., 2018). One of the major impacts of sea surface temperature rise in the marine coastal ecosystems is the occurrence of mass mortality events (MMEs). The first evidences of this phenomenon dated from the first half of \u201980 years affecting the Western Mediterranean and the Aegean Sea (Harmelin, 1984; Bavestrello and Boero, 1986; Gaino and Pronzato, 1989; Voultsiadou et al., 2011). The most impressive phenomenon happened in 1999 when an unprecedented large scale MME impacted populations of more than 30 species from different phyla along the French and Italian coasts (Cerrano et al., 2000; Perez et al., 2000). Following this event, several other large scale MMEs have been reported, along with numerous other minor ones, which are usually more restricted in geographic extend and/or number of affected species (Garrabou et al., 2009; Rivetti et al., 2014; Marb\ue0 et al., 2015; Rubio-Portillo et al., 2016, authors\u2019 personal observations). These events have generally been associated with strong and recurrent marine heat waves (Crisci et al., 2011; Kersting et al., 2013; Turicchia et al., 2018; Bensoussan et al., 2019) which are becoming more frequent globally (Smale et al., 2019). Both field observations and future projections using Regional Coupled Models (Adloff et al., 2015; Darmaraki et al., 2019) show the increase in Mediterranean sea surface temperature, with more frequent occurrence of extreme ocean warming events. As a result, new MMEs are expected during the coming years. To date, despite the efforts, neither updated nor comprehensive information can support scientific analysis of mortality events at a Mediterranean regional scale. Such information is vital to guide management and conservation strategies that can then inform adaptive management schemes that aim to face the impacts of climate change

    Generalized shrinkage F-like statistics for testing an interaction term in gene expression analysis in the presence of heteroscedasticity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many analyses of gene expression data involve hypothesis tests of an interaction term between two fixed effects, typically tested using a residual variance. In expression studies, the issue of variance heteroscedasticity has received much attention, and previous work has focused on either between-gene or within-gene heteroscedasticity. However, in a single experiment, heteroscedasticity may exist both within and between genes. Here we develop flexible shrinkage error estimators considering both between-gene and within-gene heteroscedasticity and use them to construct <it>F</it>-like test statistics for testing interactions, with cutoff values obtained by permutation. These permutation tests are complicated, and several permutation tests are investigated here.</p> <p>Results</p> <p>Our proposed test statistics are compared with other existing shrinkage-type test statistics through extensive simulation studies and a real data example. The results show that the choice of permutation procedures has dramatically more influence on detection power than the choice of <it>F </it>or <it>F</it>-like test statistics. When both types of gene heteroscedasticity exist, our proposed test statistics can control preselected type-I errors and are more powerful. Raw data permutation is not valid in this setting. Whether unrestricted or restricted residual permutation should be used depends on the specific type of test statistic.</p> <p>Conclusions</p> <p>The <it>F</it>-like test statistic that uses the proposed flexible shrinkage error estimator considering both types of gene heteroscedasticity and unrestricted residual permutation can provide a statistically valid and powerful test. Therefore, we recommended that it should always applied in the analysis of real gene expression data analysis to test an interaction term.</p

    Global 30-day outcomes after bariatric surgery during the COVID-19 pandemic (GENEVA): an international cohort study

    Get PDF
    corecore