5,114 research outputs found

    Monitoring Seagrass within the Reef 2050 Integrated Monitoring and Reporting Program: final report of the Seagrass Expert Group

    Get PDF
    Seagrass is widely distributed throughout the Great Barrier Reef (the Reef), with a documented 35,000 square kilometres and a potential habitat area of 228,300 square kilometres. Seagrass meadows occur in many different environmental conditions, both within and beyond the impact of flood plumes, and are common in areas of high anthropogenic activity, such as ports and areas adjacent to urban centres. Many processes and services that maintain the exceptional values of the Reef occur in seagrass meadows. To provide the services that support these values seagrass habitats include a range of species, growth forms and benthic landscapes, that respond to pressures in different ways. In many cases seagrasses also modify their environments to improve environmental conditions on the Reef. Seagrasses vary spatially and temporally in their distribution and abundance across the Reef, occurring in different water quality types (estuaries, coastal, reefal and offshore) and at different water depths (intertidal, shallow subtidal, deep water). The diversity of potential seagrass habitats is one reason they support so many of the environmental services and values of the Great Barrier Reef World Heritage Area (World Heritage Area), including: habitat for crabs, prawns and fish –– supporting recreational and commercial fishing; primary food resource for species of conservation significance (dugong, green turtles, migratory shore birds); shoreline stabilisation by binding sediment to slow erosion; water clarity improvement, by promoting the settlement of fine particulate matter; and providing a natural carbon sink. To deliver the seagrass components of the knowledge system required to deliver Reef 2050 Long-Term Sustainability Plan (Reef 2050 Plan) reporting and other management activities, there will need to be modifications and enhancements made to the current seagrass monitoring programs. The Drivers, Pressures, State, Impact, Response (DPSIR) framework was used to facilitate the identification of linkages between the pressures on seagrass, state of the seagrass, the impact a decline in seagrass would have on community values, and the responses management agencies can take to mitigate loss of values. We have also defined twelve seagrass habitat types that occur on the Reef, identified by a matrix of water body type and water depth. The seagrasses occurring in each habitat are exposed to different pressures and require different management actions (responses) to protect and enhance the values of the community and Reef ecosystems. The proposed monitoring program has three spatial and temporal scales, with each scale providing different information (knowledge) to support resilience-based management of the Reef. 1. Habitat assessment: will occur across the Reef at all sites where seagrass has a potential of occurring. It will determine seagrass abundance, species composition and spatial extent of each habitat type within the World Heritage Area. This scale will be focused on supporting future outlook reports, but will also provide information for operational and strategic management and contribute towards other reports. 2. Health assessment: will take place at representative regional sites, for each habitat type. These sites will provide managers with annual and seasonal trends in seagrass condition and resilience at a regional scale for each habitat. This scale will provide higher temporal detail (i.e. at least annually) of seagrass condition and resilience, supporting tactical, operational and strategic management applications. This scale will provide the majority of information for regional/catchment report cards and the assessment of management effectiveness at a catchment wide scale. It will also contribute important trends in condition and resilience to Outlook reports and other communication products with more frequent reporting. 3. Process monitoring: will take place at the fewest number of sites, nested within habitat and health assessment sites. Due to the time-consuming and complex nature of these measurements the sampling sites will be chosen to focus on priority knowledge gaps. This scale will provide managers with information on cause-and-effect relationships and linkages between different aspects of the Reef’s processes and ecosystems. This scale will include measures of seagrass resilience (for example, feedback loops, recovery time after disturbance, history of disturbance and thresholds for exposure to pressures). The attributes measured at these sites will also provide confidence to managers regarding the impact a change in seagrass condition is likely to have on other values of the Reef (for example, fish, megafauna, coral, Indigenous heritage, and human dimensions). To ensure that future seagrass monitoring delivers the information required to report on the Reef 2050 Plan and meets the other knowledge requirements of managers, a spatially balanced random sampling design needs to be implemented on the Reef. Existing monitoring programs can and should be integrated into this design. However, current seagrass monitoring programs do not provide a balanced assessment of seagrass condition across the entire Reef, hence are not suitable to meet the Reef 2050 Plan reporting requirements and many other management information needs. Existing sites within current monitoring are focused on habitat types that are intertidal and shallow sub-tidal and lie close to the coast. These habitats have been previously selected because they face high levels of cumulative anthropogenic risk and therefore have higher levels of management demand for information. The current sites are likely to decline more rapidly, in response to catchment run-off and other anthropogenic pressures, than the average for seagrass meadows across the entire Reef. They also have a greater potential to show improvements from Reef catchment management actions that reduce pollution associated with run-off. This report sets out the framework for a recommended new seagrass monitoring program, highlighting the substantial improvements in knowledge and confidence this new program will deliver, and provides a scope for the statistical design work required to support implementation of this program

    Making Decisions to Identify Forage Shrub Species for Versatile Grazing Systems

    Get PDF
    Grazing systems in many parts of the world face large challenges, including a declining natural resource base (e.g. soil fertility), marked fluctuations in feed production across seasons and years, climate change (including the contribution of greenhouse gases from livestock), and market demands for sustainable and ethical production systems. The ‘Enrich’ project was established in Australia (Revell et al. 2008; Bennell et al. 2010) within this broad context of emerging challenges to explore the potential of using Australian native perennial shrub species as part of the feedbase for sheep and cattle in southern Australia. The underlying rationale was to: add perennial shrub species into the existing annual-based pasture feedbase so that the forage system could tolerate extended dry periods but provide green edible plant material during periods where a ‘feed gap’ would otherwise exist; be productive on marginal soils where other productive options are limited (Masters et al. 2010); and have a positive effect on gut function and health (Vercoe et al. 2007); i.e. a versatile grazing system. This paper outlines the research approach that was taken, and reports on a ‘decision tree’ to prioritise species from an initial large list, based on a wide range of plant characteristics and how they can be used in a grazing system

    Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB

    Get PDF
    We present results of a dark matter search performed with a 0.6 kg day exposure of the DAMIC experiment at the SNOLAB underground laboratory. We measure the energy spectrum of ionization events in the bulk silicon of charge-coupled devices down to a signal of 60 eV electron equivalent. The data are consistent with radiogenic backgrounds, and constraints on the spin-independent WIMP-nucleon elastic-scattering cross section are accordingly placed. A region of parameter space relevant to the potential signal from the CDMS-II Si experiment is excluded using the same target for the first time. This result obtained with a limited exposure demonstrates the potential to explore the low-mass WIMP region (<10 GeV/c2c^{2}) of the upcoming DAMIC100, a 100 g detector currently being installed in SNOLAB.Comment: 11 pages, 11 figure

    Results of the engineering run of the coherent neutrino nucleus interaction experiment (CONNIE)

    Get PDF
    The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below2 e RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.Fil: Aguilar Arevalo, A.. Universidad Nacional Autónoma de México; MéxicoFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; ArgentinaFil: Bonifazi, C.. Universidade Federal do Rio de Janeiro; BrasilFil: Butner, M.. Fermi National Accelerator Laboratory; Estados UnidosFil: Cancelo, G.. Fermi National Accelerator Laboratory; Estados UnidosFil: Castañeda Vazquez, A.. Universidad Nacional Autónoma de México; MéxicoFil: Cervantes Vergara, B.. Universidad Nacional Autónoma de México; MéxicoFil: Chavez, C. R.. Universidad Nacional de Asunción; ParaguayFil: Da Motta, H.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: D'Olivo, J. C.. Universidad Nacional Autónoma de México; MéxicoFil: Dos Anjos, J.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Estrada, J.. Fermi National Accelerator Laboratory; Estados UnidosFil: Fernández Moroni, Guillermo. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ford, R.. Fermi National Accelerator Laboratory; Estados UnidosFil: Foguel, A.. Centro Brasileiro de Pesquisas Físicas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Hernandez Torres, K. P.. Universidad Nacional Autónoma de México; MéxicoFil: Izraelevitch, F.. Fermi National Accelerator Laboratory; Estados UnidosFil: Kavner, A.. University of Michigan; Estados UnidosFil: Kilminster, B.. Universitat Zurich; SuizaFil: Kuk, K.. Fermi National Accelerator Laboratory; Estados UnidosFil: Lima Jr, H. P.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Makler, M.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Molina, J.. Universidad Nacional de Asunción; ParaguayFil: Moreno Granados, G.. Universidad Nacional Autónoma de México; MéxicoFil: Moro, Juan Manuel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; ArgentinaFil: Sofo Haro, Miguel Francisco. Comision Nacional de Energia Atomica. Gerencia D/area de Energia Nuclear; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tiffenberg, Javier Sebastian. Fermi National Accelerator Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trillaud, F.. Universidad Nacional Autónoma de México; MéxicoFil: Wagner, S.. Centro Brasileiro de Pesquisas Físicas; Brasil. Pontificia Universidade Católica do Rio Grande do Sul; Brasi

    Current status of CARLOMAT, a program for automatic computation of lowest order cross sections

    Full text link
    The current status of CARLOMAT, a program for automatic computation of the lowest order cross sections of multiparticle reactions is described, the results of comparisons with other multipurpose Monte Carlo programs are shown and some new results on e+e- -> b anti-b b anti-b u anti-d d anti-u are presented.Comment: 6 pages, LaTeX, 3 postscript figures, to appear in proceedings of the "9th Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory", Sondershausen, Germany, April 20-25, 200
    corecore