883 research outputs found

    Hierarchical Bin Buffering: Online Local Moments for Dynamic External Memory Arrays

    Get PDF
    Local moments are used for local regression, to compute statistical measures such as sums, averages, and standard deviations, and to approximate probability distributions. We consider the case where the data source is a very large I/O array of size n and we want to compute the first N local moments, for some constant N. Without precomputation, this requires O(n) time. We develop a sequence of algorithms of increasing sophistication that use precomputation and additional buffer space to speed up queries. The simpler algorithms partition the I/O array into consecutive ranges called bins, and they are applicable not only to local-moment queries, but also to algebraic queries (MAX, AVERAGE, SUM, etc.). With N buffers of size sqrt{n}, time complexity drops to O(sqrt n). A more sophisticated approach uses hierarchical buffering and has a logarithmic time complexity (O(b log_b n)), when using N hierarchical buffers of size n/b. Using Overlapped Bin Buffering, we show that only a single buffer is needed, as with wavelet-based algorithms, but using much less storage. Applications exist in multidimensional and statistical databases over massive data sets, interactive image processing, and visualization

    Single Nucleotide Polymorphism Typing of Mycobacterium ulcerans Reveals Focal Transmission of Buruli Ulcer in a Highly Endemic Region of Ghana

    Get PDF
    Buruli ulcer (BU) is an emerging necrotizing disease of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. While proximity to stagnant or slow flowing water bodies is a risk factor for acquiring BU, the epidemiology and mode of M. ulcerans transmission is poorly understood. Here we have used high-throughput DNA sequencing and comparisons of the genomes of seven M. ulcerans isolates that appeared monomorphic by existing typing methods. We identified a limited number of single nucleotide polymorphisms (SNPs) and developed a real-time PCR SNP typing method based on these differences. We then investigated clinical isolates of M. ulcerans on which we had detailed information concerning patient location and time of diagnosis. Within the Densu river basin of Ghana we observed dominance of one clonal complex and local clustering of some of the variants belonging to this complex. These results reveal focal transmission and demonstrate, that micro-epidemiological analyses by SNP typing has great potential to help us understand how M. ulcerans is transmitted

    Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells

    Get PDF
    Microsomal triglyceride transfer protein (MTP), an endoplasmic reticulum (ER) chaperone that loads lipids onto apolipoprotein B, also regulates CD1d presentation of glycolipid antigens in the liver and intestine. We show MTP RNA and protein in antigen-presenting cells (APCs) by reverse transcription–polymerase chain reaction and by immunoblotting of mouse liver mononuclear cells and mouse and human B cell lines. Functional MTP, demonstrated by specific triglyceride transfer activity, is present in both mouse splenocytes and a CD1d-positive mouse NKT hybridoma. In a novel in vitro transfer assay, purified MTP directly transfers phospholipids, but not triglycerides, to recombinant CD1d. Chemical inhibition of MTP lipid transfer does not affect major histocompatibility complex class II presentation of ovalbumin, but considerably reduces CD1d-mediated presentation of α-galactosylceramide (α-galcer) and endogenous antigens in mouse splenic and bone marrow–derived dendritic cells (DCs), as well as in human APC lines and monocyte-derived DCs. Silencing MTP expression in the human monocyte line U937 affects CD1d function, as shown by diminished presentation of α-galcer. We propose that MTP acts upstream of the saposins and functions as an ER chaperone by loading endogenous lipids onto nascent CD1d. Furthermore, our studies suggest that a small molecule inhibitor could be used to modulate the activity of NKT cells

    Adiponectin, Leptin and Visfatin in Hypoxia and its Effect for Weight Loss in Obesity

    Get PDF
    Rationale: Hypoxia induces leptin gene expression in human adipocytes via hypoxia-inducible factors (HIF-α/β). Under ambient moderate hypoxia, leptin in adipocytes is elevated for at least 14 days. Leptin is supposedly involved in the reduced food intake, increased utilization of fatty acids for energy production and possible weight loss observed at high altitudes. Literature on adiponectin and visfatin in high altitude is inconsistent with reports of elevated levels and non-elevated levels. Exercise in hypoxia studies in obese subjects have shown a significant weight loss after up to 3 weeks, but it is unclear if this effect holds up for longer time periods. Therefore, we aimed to investigate 32 obese subjects completing 52 exercise and rest sessions within 8 months at either moderate or sham hypoxia and to analyze leptin, adiponectin, and visfatin mRNA-expression at different time points of exposure.Methods: Abdominal subcutaneous fat biopsies were taken from 32 obese subjects before, after 3 months and after 8 months of intervention. Subjects were randomly divided into two groups and exercised at moderate intensity at two different study sites twice a week. The IG was exposed to normobaric hypoxia (FiO2: 14.0 ± 0.2%,) at exercise and at rest (FiO2: 12.0 ± 0.2%) and the CG to sham hypoxia. Quantitative real-time polymerase chain reaction (qPCR) was used in order to determine mRNA-levels of leptin, adiponectin, and visfatin.Results: No differences in leptin levels after 3 and 8 months compared to baseline and between groups were found. There was no significant difference regarding adiponectin or visfatin at any time point compared to baseline in the hypoxia group, but an increase after 3 months was seen in the control group at normoxia compared to the hypoxia group (adiponectin: p = 0.029 and visfatin: p = 0.014).Conclusion: In this first several months' duration randomized sham controlled hypoxia exercise and rest study with obese subjects, we found no time extended leptin mRNA-expression in subjects under hypoxia after 3 and 8 months compared to baseline levels. Moderate exercise in normoxia not in hypoxia leads to elevated adiponectin and visfatin levels after 3 months

    Communicating climate knowledge proxies, processes, politics

    Get PDF
    This forum article is the product of interdisciplinary discussion at a conference on climate histories held inCambridge, United Kingdom, in early 2011, with the specific aim of building a network around the issue of communicating cultural knowledge of environmental change. The lead articles, by Kirsten Hastrup as an anthropologist and Simon Schaffer as a historian of science, highlight the role of agents and proxies. These are followed by five interdisciplinary commentaries, which engage with the lead articles through new ethnographic material, and a set of shorter commentaries by leading scholars of different disciplines. Finally, the lead authors respond to the discussion. In this debate, climate change does not emerge as a single preformed "problem." Rather, different climate knowledges appear as products of particular networks and agencies. Just as the identification of proxies creates agents (ice, mountains, informants) by inserting them into new networks, we hope that these cross-disciplinary exchanges will produce further conversations and new approaches to action. © 2012 by The Wenner-Gren Foundation for Anthropological Research

    Paneth cells as a site of origin for intestinal inflammation.

    Get PDF
    The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(ΔIEC)) or autophagy function (Atg16l1(ΔIEC) or Atg7(ΔIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(ΔIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2α (eIF2α) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1α (IRE1α)-regulated NF-κB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1α activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-κB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells

    Pathogenesis of non-alcoholic fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of disease ranging from hepatocellular steatosis through steatohepatitis to fibrosis and irreversible cirrhosis. The prevalence of NAFLD has risen rapidly in parallel with the dramatic rise in obesity and diabetes, and is rapidly becoming the most common cause of liver disease in Western countries. Indeed, NAFLD is now recognized to be the aetiology in many cases previously labelled as cryptogenic cirrhosis
    • …
    corecore