158 research outputs found

    A biophysical model of cell adhesion mediated by immunoadhesin drugs and antibodies

    Get PDF
    A promising direction in drug development is to exploit the ability of natural killer cells to kill antibody-labeled target cells. Monoclonal antibodies and drugs designed to elicit this effect typically bind cell-surface epitopes that are overexpressed on target cells but also present on other cells. Thus it is important to understand adhesion of cells by antibodies and similar molecules. We present an equilibrium model of such adhesion, incorporating heterogeneity in target cell epitope density and epitope immobility. We compare with experiments on the adhesion of Jurkat T cells to bilayers containing the relevant natural killer cell receptor, with adhesion mediated by the drug alefacept. We show that a model in which all target cell epitopes are mobile and available is inconsistent with the data, suggesting that more complex mechanisms are at work. We hypothesize that the immobile epitope fraction may change with cell adhesion, and we find that such a model is more consistent with the data. We also quantitatively describe the parameter space in which binding occurs. Our results point toward mechanisms relating epitope immobility to cell adhesion and offer insight into the activity of an important class of drugs.Comment: 13 pages, 5 figure

    Engineering supported membranes for cell biology

    Get PDF
    Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology

    Modeling of B cell Synapse Formation by Monte Carlo Simulation Shows That Directed Transport of Receptor Molecules Is a Potential Formation Mechanism

    Get PDF
    The formation of the protein segregation structure known as the “immunological synapse” in the contact region between B cells and antigen presenting cells appears to precede antigen (Ag) uptake by B cells. The mature B cell synapse consists of a central cluster of B cell receptor/Antigen (BCR/Ag) complexes surrounded by a ring of LFA-1/ICAM-1 complexes. In this study, we used an in silico model to investigate whether cytoskeletally driven transport of molecules toward the center of the contact zone is a potential mechanism of immunological synapse formation in B cells. We modeled directed transport by the cytoskeleton in an effective manner, by biasing the diffusion of molecules toward the center of the contact zone. Our results clearly show that biased diffusion of BCR/Ag complexes on the B cell surface is sufficient to produce patterns similar to experimentally observed immunological synapses. This is true even in the presence of significant membrane deformation as a result of receptor–ligand binding, which in previous work we showed had a detrimental effect on synapse formation at high antigen affinity values. Comparison of our model’s results to those of experiments shows that our model produces synapses for realistic length, time, and affinity scales. Our results also show that strong biased diffusion of free molecules has a negative effect on synapse formation by excluding BCR/Ag complexes from the center of the contact zone. However, synapses may still form provided the bias in diffusion of free molecules is an order-of-magnitude weaker than that of BCR/Ag complexes. We also show how diffusion trajectories obtained from single-molecule tracking experiments can generate insight into the mechanism of synapse formation

    Monte Carlo Investigation of Diffusion of Receptors and Ligands that Bind Across Opposing Surfaces

    Get PDF
    Studies of receptor diffusion on a cell surface show a variety of behaviors, such as diffusive, sub-diffusive, or super-diffusive motion. However, most studies to date focus on receptor molecules diffusing on a single cell surface. We have previously studied receptor diffusion to probe the molecular mechanism of receptor clustering at the cell–cell junction between two opposing cell surfaces. Here, we characterize the diffusion of receptors and ligands that bind to each other across two opposing cell surfaces, as in cell–cell and cell–bilayer interactions. We use a Monte Carlo method, where receptors and ligands are simulated as independent agents that bind and diffuse probabilistically. We vary receptor–ligand binding affinity and plot the molecule-averaged mean square displacement (MSD) of ligand molecules as a function of time. Our results show that MSD plots are qualitatively different for flat and curved interfaces, as well as between the cases of presence and absence of directed transport of receptor–ligand complexes toward a specific location on the interface. Receptor–ligand binding across two opposing surfaces leads to transient sub-diffusive motion at early times provided the interface is flat. This effect is entirely absent if the interface is curved, however, in this instance we observe sub-diffusive motion. In addition, a decrease in the equilibrium value of the MSD occurs as affinity increases, something which is absent for a flat interface. In the presence of directed transport of receptor–ligand complexes, we observe super-diffusive motion at early times for a flat interface. Super-diffusive motion is absent for a curved interface, however, in this case we observe a transient decrease in MSD with time prior to equilibration for high-affinity values

    Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation

    Get PDF
    T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses

    Terrestrial invasion of pomatiopsid gastropods in the heavy-snow region of the Japanese Archipelago

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastropod mollusks are one of the most successful animals that have diversified in the fully terrestrial habitat. They have evolved terrestrial taxa in more than nine lineages, most of which originated during the Paleozoic or Mesozoic. The rissooidean gastropod family Pomatiopsidae is one of the few groups that have evolved fully terrestrial taxa during the late Cenozoic. The pomatiopsine diversity is particularly high in the Japanese Archipelago and the terrestrial taxa occur only in this region. In this study, we conducted thorough samplings of Japanese pomatiopsid species and performed molecular phylogenetic analyses to explore the patterns of diversification and terrestrial invasion.</p> <p>Results</p> <p>Molecular phylogenetic analyses revealed that Japanese Pomatiopsinae derived from multiple colonization of the Eurasian Continent and that subsequent habitat shifts from aquatic to terrestrial life occurred at least twice within two Japanese endemic lineages. Each lineage comprises amphibious and terrestrial species, both of which are confined to the mountains in heavy-snow regions facing the Japan Sea. The estimated divergence time suggested that diversification of these terrestrial lineages started in the Late Miocene, when active orogenesis of the Japanese landmass and establishment of snowy conditions began.</p> <p>Conclusions</p> <p>The terrestrial invasion of Japanese Pomatiopsinae occurred at least twice beside the mountain streamlets of heavy-snow regions, which is considered the first case of this event in the area. Because snow coverage maintains stable temperatures and high humidity on the ground surface, heavy-snow conditions may have paved the way for these organisms from freshwater to land via mountain streamlets by preventing winter desiccation in mountain valleys. The fact that the terrestrialization of Pomatiopsidae occurred only in year-round wet environments, but not in seasonally dried regions, provides new insight into ancient molluscan terrestrialization.</p

    The Immunological Synapse: a Dynamic Platform for Local Signaling

    Get PDF
    The immunological synapse (IS) as a concept has evolved from a static view of the junction between T cells and their antigen-presenting cell partners. The entire process of IS formation and extinction is now known to entail a dynamic reorganization of membrane domains and proteins within and adjacent to those domains. Discussion The entire process is also intricately tied to the motility machinery—both as that machinery directs “scanning” prior to T-cell receptor engagement and as it is appropriated during the ongoing developments at the IS. While the synapse often remains dynamic in order to encourage surveillance of new antigen-presenting surfaces, cytoskeletal forces also regulate the development of signals, likely including the assembly of ion channels. In both neuronal and immunological synapses, localized Ca 2+ signals and accumulation or depletion of ions in microdomains accompany the concentration of signaling molecules in the synapse. Such spatiotemporal signaling in the synapse greatly accelerates kinetics and provides essential checkpoints to validate effective cell–cell communication

    Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation

    Get PDF
    Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88–103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL

    Catalysing sustainable fuel and chemical synthesis

    Get PDF
    Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands

    ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress

    Get PDF
    The endoplasmic reticulum (ER) produces about 40% of the nucleated cell’s proteome. ER size and content in molecular chaperones increase upon physiologic and pathologic stresses on activation of unfolded protein responses (UPR). On stress resolution, the mammalian ER is remodeled to pre-stress, physiologic size and function on activation of the LC3-binding activity of the translocon component SEC62. This elicits recov-ER- phagy, i.e., the delivery of the excess ER generated during the phase of stress to endolysosomes (EL) for clearance. Here, ultrastructural and genetic analyses reveal that recov-ER-phagy entails the LC3 lipidation machinery and proceeds via piecemeal micro- ER-phagy, where RAB7/LAMP1-positive EL directly engulf excess ER in processes that rely on the Endosomal Sorting Complex Required for Transport (ESCRT)-III component CHMP4B and the accessory AAA+ ATPase VPS4A. Thus, ESCRT-III-driven micro-ER- phagy emerges as a key catabolic pathway activated to remodel the mammalian ER on recovery from ER stress
    corecore