224 research outputs found

    Toll-like receptor 2 and Toll-like receptor 4 predict favorable prognosis in local pancreatic cancer

    Get PDF
    Toll-like receptors play an essential role in our innate immune system and are a focus of interest in contemporary cancer research. Thus far, Toll-like receptors have shown promising prognostic value in carcinomas of the oral cavity, colon, and ovaries, but the prognostic role of Toll-like receptors in pancreatic ductal adenocarcinoma has not been established. We set out to investigate whether Toll-like receptor expression could serve in prognostic evaluation in pancreatic ductal adenocarcinoma, as well. Our study comprised 154 consecutive stage I?III pancreatic ductal adenocarcinoma patients surgically treated at Helsinki University Hospital between 2002 and 2011. Patients who received neoadjuvant therapy were excluded. Tissue microarrays and immunohistochemistry allowed assessment of the expression of Toll-like receptor 2 and Toll-like receptor 4 in pancreatic ductal adenocarcinoma tissue, and we matched staining results against clinicopathological parameters using Fisher?s test. For survival analysis, we used the Kaplan?Meier method and the log-rank test, and the Cox regression proportional hazard model for univariate and multivariate analyses. The hazard ratios were calculated for disease-specific overall survival. Strong Toll-like receptor 2 expression was observable in 51 (34%) patients and strong Toll-like receptor 4 in 50 (33%) patients. Overall, neither marker showed any direct coeffect on survival. However, strong Toll-like receptor 2 expression predicted better survival when tumor size was less than 30?mm (hazard ratio?=?0.30; 95% confidence interval?=?0.13?0.69; p?=?0.005), and strong Toll-like receptor 4 expression predicted better survival in patients with lymph-node-negative disease (hazard ratio?=?0.21; 95% confidence interval?=?0.07?0.65; p?=?0.006). In conclusion, we found strong Toll-like receptor 2 and Toll-like receptor 4 expressions to be independent factors of better prognosis in pancreatic ductal adenocarcinoma patients with stage I?II disease.Peer reviewe

    The PNPLA3-I148M Variant Confers an Antiatherogenic Lipid Profile in Insulin-resistant Patients

    Get PDF
    Context: The I148M (rs738409-G) variant in PNPLA3 increases liver fat content but may be protective against cardiovascular disease. Insulin resistance (IR) amplifies the effect of PNPLA3-I148M on liver fat. Objective: To study whether PNPLA3-I148M confers an antihyperlipidemic effect in insulin-resistant patients. Design: Cross-sectional study comparing the impact of PNPLA3-I148M on plasma lipids and lipoproteins in 2 cohorts, both divided into groups based on rs738409-G allele carrier status and median HOMA-IR. Setting: Tertiary referral center. Patients: A total of 298 obese patients who underwent a liver biopsy during bariatric surgery (bariatric cohort: age 49 +/- 9 years, body mass index [BMI] 43.2 +/- 6.8 kg/m(2)), and 345 less obese volunteers in whom liver fat was measured by proton magnetic resonance spectroscopy (nonbariatric cohort: age 45 +/- 14 years, BMI 29.7 +/- 5.7 kg/m(2)). Main Outcome Measures: Nuclear magnetic resonance profiling of plasma lipids, lipoprotein particle subclasses and their composition. Results: In both cohorts, individuals carrying the PNPLA3-I148M variant had significantly higher liver fat content than noncarriers. In insulin-resistant and homozygous carriers, PNPLA3-I148M exerted a distinct antihyperlipidemic effect with decreased very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) particles and their constituents, and increased high-density lipoprotein particles and their constituents, compared with noncarriers. VLDL particles were smaller and LDL particles larger in PNPLA3-I148M carriers. These changes were geometrically opposite to those due to IR. PNPLA3-I148M did not have a measurable effect in patients with lower IR, and its effect was smaller albeit still significant in the less obese than in the obese cohort. Conclusions: PNPLA3-I148M confers an antiatherogenic plasma lipid profile particularly in insulin-resistant individuals.Peer reviewe

    Teacher's reflection of inquiry teaching in finland before and during an in-service program: Examination by a progress model of collaborative reflection

    Get PDF
    In inquiry-based science education, there have been gradual shifts in research interests: the nature of scientific method, the debates on the effects of inquiry learning, and, recently, inquiry teaching. However, many in-service programs for inquiry teaching have reported inconsistent results due to the static view of classroom inquiries and due to the partial perspective between individual and collaborative reflections. Thus, by means of a theoretical progress model of collaborative reflection, this qualitative research aims to investigate reflections of four participant teachers before and during a half-year in-service teacher program. The model captures the following four interactions for each individual teacher and among the teacher cohort: belief to practice, practice to belief, stimulation, and reinforcement. The audio-video data and their quantification allowed identification of the teachers' consistent prior beliefs and practices as a multiplicity of inquiry teaching and their interwoven progress during the program. The findings are further discussed in terms of the implicit development and the richer repertoire. © 2012 National Science Council, Taiwan

    Assessment of Lifestyle Factors Helps to Identify Liver Fibrosis Due to Non-Alcoholic Fatty Liver Disease in Obesity

    Get PDF
    Only some individuals with obesity develop liver fibrosis due to non-alcoholic fatty liver disease (NAFLD-fibrosis). We determined whether detailed assessment of lifestyle factors in addition to physical, biochemical and genetic factors helps in identification of these patients. A total of 100 patients with obesity (mean BMI 40.0 ± 0.6 kg/m2) referred for bariatric surgery at the Helsinki University Hospital underwent a liver biopsy to evaluate liver histology. Physical activity was determined by accelerometer recordings and by the Modifiable Activity Questionnaire, diet by the FINRISK Food Frequency Questionnaire, and other lifestyle factors, such as sleep patterns and smoking, by face-to-face interviews. Physical and biochemical parameters and genetic risk score (GRS based on variants in PNPLA3, TM6SF2, MBOAT7 and HSD17B13) were measured. Of all participants 49% had NAFLD-fibrosis. Independent predictors of NAFLD-fibrosis were low moderate-to-vigorous physical activity, high red meat intake, low carbohydrate intake, smoking, HbA1c, triglycerides and GRS. A model including these factors (areas under the receiver operating characteristics curve (AUROC) 0.90 (95% CI 0.84–0.96)) identified NAFLD-fibrosis significantly more accurately than a model including all but lifestyle factors (AUROC 0.82 (95% CI 0.73–0.91)) or models including lifestyle, physical and biochemical, or genetic factors alone. Assessment of lifestyle parameters in addition to physical, biochemical and genetic factors helps to identify obese patients with NAFLD-fibrosis

    Obesity/insulin resistance rather than liver fat increases coagulation factor activities and expression in humans

    Get PDF
    Increased liver fat may be caused by insulin resistance and adipose tissue inflammation or by the common I148M variant in PNPLA3 at rs738409, which lacks both of these features. We hypothesised that obesity/insulin resistance rather than liver fat increases circulating coagulation factor activities. We measured plasma prothrombin time (PT, Owren method), activated partial thromboplastin time (APTT), activities of several coagulation factors, VWF:RCo and fibrinogen, and D-dimer concentration in 92 subjects divided into groups based on insulin sensitivity [insulin-resistant ('IR') versus insulin-sensitive ('IS')] and PNPLA3 genotype (PNPLA3(148MM/MI) vs PNPLA3(148II)). Liver fat content (H-1-MRS) was similarly increased in 'IR' (13 +/- 1%) and PNPLA3(148MM/MI) (12 +/- 2%) as compared to 'IS' (6 +/- 1%, pPeer reviewe

    Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease

    Get PDF
    Background & aims: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism. Methods: In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model. Results: PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-a-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes. Conclusions: Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism. Lay summary: There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.Peer reviewe

    Intercomparison of air ion spectrometers: An evaluation of results in varying conditions

    Get PDF
    We evaluated 11 air ion spectrometers from Airel Ltd. after they had spent one year in field measurements as a part of the EUCAARI project: 5 Air Ion Spectrometers (AIS), 5 Neutral cluster and Air Ion Spectrometers (NAIS) and one Airborne NAIS (ANAIS). This is the first time that an ANAIS is evaluated and compared so extensively. The ion spectrometers' mobility and concentration accuracy was evaluated. Their measurements of ambient air were compared between themselves and to reference instruments: a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA), and an Ion-DMPS. We report on the simultaneous measurement of a new particle formation (NPF) event by all 11 instruments and the 3 reference instruments. To our knowledge, it is the first time that the size distribution of ions and particles is measured by so many ion spectrometers during a NPF event. The new particle formation rates (~0.2 cm−3 s−1 for ions and ~2 cm−3 s−1 for particles) and growth rates (~25 nm h−1 in the 3–7 nm size range) were calculated for all the instruments. The NAISs and the ANAIS gave higher concentrations and formation rates than the AISs. For example, the AISs agreed with the BSMA within 11 % and 28 % for negative and positive ion concentration respectively, whereas the NAISs agreed within 23 % and 29 %. Finally, based on the results presented here, we give guidelines for data evaluation, when data from different individual ion spectrometers are compared

    The PNPLA3-I148M variant increases polyunsaturated triglycerides in human adipose tissue

    Get PDF
    Background & Aims The I148M variant in PNPLA3 is the major genetic risk factor for non-alcoholic fatty liver disease (NAFLD). The liver is enriched with polyunsaturated triglycerides (PUFA-TGs) in PNPLA3-I148M carriers. Gene expression data indicate that PNPLA3 is liver-specific in humans, but whether it functions in adipose tissue (AT) is unknown. We investigated whether PNPLA3-I148M modifies AT metabolism in human NAFLD. Methods Profiling of the AT lipidome and fasting serum non-esterified fatty acid (NEFA) composition was conducted in 125 volunteers (PNPLA3(148MM/MI), n = 63; PNPLA3(148II), n = 62). AT fatty acid composition was determined in 50 volunteers homozygous for the variant (PNPLA3(148MM), n = 25) or lacking the variant (PNPLA3(148II), n = 25). Whole-body insulin sensitivity of lipolysis was determined using [H-2(5)]glycerol, and PNPLA3 mRNA and protein levels were measured in subcutaneous AT and liver biopsies in a subset of the volunteers. Results PUFA-TGs were significantly increased in AT in carriers versus non-carriers of PNPLA3-I148M. The variant did not alter the rate of lipolysis or the composition of fasting serum NEFAs. PNPLA3 mRNA was 33-fold higher in the liver than in AT (P <.0001). In contrast, PNPLA3 protein levels per tissue protein were three-fold higher in AT than the liver (P <.0001) and nine-fold higher when related to whole-body AT and liver tissue masses (P <.0001). Conclusions Contrary to previous assumptions, PNPLA3 is highly abundant in AT. PNPLA3-I148M locally remodels AT TGs to become polyunsaturated as it does in the liver, without affecting lipolysis or composition of serum NEFAs. Changes in AT metabolism do not contribute to NAFLD in PNPLA3-I148M carriers.Peer reviewe
    corecore