231 research outputs found

    Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis.

    Get PDF
    Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival

    Oxidative stress augments toll-like receptor 8 mediated neutrophilic responses in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive oxidative stress has been reported to be generated in inflamed tissues and contribute to the pathogenesis of inflammatory lung diseases, exacerbations of which induced by viral infections are associated with toll-like receptor (TLR) activation. Among these receptors, TLR8 has been reported as a key receptor that recognizes single-strand RNA virus. However, it remains unknown whether TLR8 signaling is potentiated by oxidative stress. The aim of this study is to examine whether oxidative stress modulates TLR8 signaling in vitro.</p> <p>Methods</p> <p>Human peripheral blood neutrophils were obtained from healthy non-smokers and stimulated with TLR 7/8 agonist imidazoquinoline resiquimod (R848) in the presence or absence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Neutrophilic responses including cytokine release, superoxide production and chemotaxis were examined, and the signal transduction was also analyzed.</p> <p>Results</p> <p>Activation of TLR8, but not TLR7, augmented IL-8 release. The R848-augmented IL-8 release was significantly potentiated by pretreatment with H<sub>2</sub>O<sub>2 </sub>(p < 0.01), and N-acetyl-<smcaps>L</smcaps>-cysteine reversed this potentiation. The combination of H<sub>2</sub>O<sub>2 </sub>and R848 significantly potentiated NF-kB phosphorylation and IkBα degradation. The H<sub>2</sub>O<sub>2</sub>-potentiated IL-8 release was suppressed by MG-132, a proteosome inhibitor, and by dexamethasone. The expressions of TLR8, myeloid differentiation primary response gene 88 (MyD88), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were not affected by H<sub>2</sub>O<sub>2</sub>.</p> <p>Conclusion</p> <p>TLR8-mediated neutrophilic responses were markedly potentiated by oxidative stress, and the potentiation was mediated by enhanced NF-kB activation. These results suggest that oxidative stress might potentiate the neutrophilic inflammation during viral infection.</p

    Oxidative stress and life histories: unresolved issues and current needs

    Get PDF
    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life-history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade-offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other

    Toll-like receptors in cellular subsets of human tonsil T cells: altered expression during recurrent tonsillitis

    Get PDF
    BACKGROUND: The palatine tonsils have a pivotal role in immunological detection of airborne and ingested antigens like bacteria and viruses. They have recently been demonstrated to express Toll-like receptors (TLRs), known to recognize molecular structures on such microbes and activate innate immune responses. Their activation might also provide a link between innate and adaptive immunity. In the present study, the expression profile of TLR1-TLR10 was characterized in human tonsil T cells, focusing on differences between subsets of CD4(+ )T helper (Th) cells and CD8(+ )cytotoxic T lymphocytes (CTL). The study was also designed to compare the TLR expression in T cells from patients with recurrent tonsillitis and tonsillar hyperplasia. METHODS: Tonsils were obtained from children undergoing tonsillectomy, and classified according to the clinical diagnoses and the outcome of tonsillar core culture tests. Two groups were defined; recurrently infected tonsils and hyperplastic tonsils that served as controls. Subsets of T cells were isolated using magnetic beads. The expression of TLR transcripts in purified cells was assessed using quantitative real-time RT-PCR. The corresponding protein expression was investigated using flow cytometry and immunohistochemistry. RESULTS: T cells expressed a broad repertoire of TLRs, in which TLR1, TLR2, TLR5, TLR9 and TLR10 predominated. Also, a differential expression of TLRs in CD4(+ )and CD8(+ )T cells was obtained. TLR1 and TLR9 mRNA was expressed to a greater extent in CD4(+ )cells, whereas expression of TLR3 mRNA and protein and TLR4 protein was higher in CD8(+ )cells. CD8(+ )cells from infected tonsils expressed higher levels of TLR2, TLR3 and TLR5 compared to control. In contrast, CD4(+ )cells exhibited a down-regulated TLR9 as a consequence of infection. CONCLUSION: The present study demonstrates the presence of a broad repertoire of TLRs in T cells, a differential expression in CD4(+ )and CD8(+ )cells, along with infection-dependent alterations in TLR expression. Collectively, these results support the idea that TLRs are of importance to adaptive immune cells. It might be that TLRs have a direct role in adaptive immune reactions against infections. Thus, further functional studies of the relevance of TLR stimulation on T cells will be of importance

    Activation and Inhibition of Transglutaminase 2 in Mice

    Get PDF
    Transglutaminase 2 (TG2) is an allosterically regulated enzyme with transamidating, deamidating and cell signaling activities. It is thought to catalyze sequence-specific deamidation of dietary gluten peptides in the small intestines of celiac disease patients. Because this modification has profound consequences for disease pathogenesis, there is considerable interest in the design of small molecule TG2 inhibitors. Although many classes of TG2 inhibitors have been reported, thus far an animal model for screening them to identify promising celiac drug candidates has remained elusive. Using intraperitoneal administration of the toll-like receptor 3 (TLR3) ligand, polyinosinic-polycytidylic acid (poly(I∶C)), we induced rapid TG2 activation in the mouse small intestine. Dose dependence was observed in the activation of TG2 as well as the associated villous atrophy, gross clinical response, and rise in serum concentration of the IL-15/IL-15R complex. TG2 activity was most pronounced in the upper small intestine. No evidence of TG2 activation was observed in the lung mucosa, nor were TLR7/8 ligands able to elicit an analogous response. Introduction of ERW1041E, a small molecule TG2 inhibitor, in this mouse model resulted in TG2 inhibition in the small intestine. TG2 inhibition had no effect on villous atrophy, suggesting that activation of this enzyme is a consequence, rather than a cause, of poly(I∶C) induced enteropathy. Consistent with this finding, administration of poly(I∶C) to TG2 knockout mice also induced villous atrophy. Our findings pave the way for pharmacological evaluation of small molecule TG2 inhibitors as drug candidates for celiac disease

    Enhanced Platelet Activation Mediates the Accelerated Angiogenic Switch in Mice Lacking Histidine-Rich Glycoprotein

    Get PDF
    BACKGROUND: The heparin-binding plasma protein histidine-rich glycoprotein (HRG; alternatively, HRGP/HPRG) can suppress tumor angiogenesis and growth in vitro and in vivo. Mice lacking the HRG gene are viable and fertile, but have an enhanced coagulation resulting in decreased bleeding times. In addition, the angiogenic switch is significantly enhanced in HRG-deficient mice. METHODOLOGY/PRINCIPAL FINDINGS: To address whether HRG deficiency affects tumor development, we have crossed HRG knockout mice with the RIP1-Tag2 mouse, a well established orthotopic model of multistage carcinogenesis. RIP1-Tag2 HRG(-/-) mice display significantly larger tumor volume compared to their RIP1-Tag2 HRG(+/+) littermates, supporting a role for HRG as an endogenous regulator of tumor growth. In the present study we also demonstrate that platelet activation is increased in mice lacking HRG. To address whether this elevated platelet activation contributes to the increased pathological angiogenesis in HRG-deficient mice, they were rendered thrombocytopenic before the onset of the angiogenic switch by injection of the anti-platelet antibody GP1bα. Interestingly, this treatment suppressed the increase in angiogenic neoplasias seen in HRG knockout mice. However, if GP1bα treatment was initiated at a later stage, after the onset of the angiogenic switch, no suppression of tumor growth was detected in HRG-deficient mice. CONCLUSIONS: Our data show that increased platelet activation mediates the accelerated angiogenic switch in HRG-deficient mice. Moreover, we conclude that platelets play a crucial role in the early stages of tumor development but are of less significance for tumor growth once angiogenesis has been initiated

    Expression of MAGE-1 and -3 genes and gene products in human hepatocellular carcinoma

    Get PDF
    MAGE gene family encodes peptides recognized by autologous cytotoxic T lymphocytes in a major histocompatibility complex (MHC) class-I restricted fashion. In the present study, we have performed reverse-transcription polymerase chain reaction (RT-PCR) for the genes, as well as immunohistochemical analysis and Western blotting of MAGE-1 and -3 proteins in 33 surgically resected hepatocellular carcinomas (HCCs). MAGE-1 and -3 mRNAs were constitutively expressed exclusively in 78 and 42% of HCCs respectively. On immunohistochemistry with monoclonal antibodies, 77B for MAGE-1 and 57B for MAGE-3, MAGE-1 and -3 proteins were recognized in cytoplasm of only six among 33 (18%) and two of 29 HCCs (7%) respectively. The distribution pattern was mostly focal in HCC nodules. By contrast, the Western blot analysis revealed that the MAGE-1 (46 kDa) and -3 proteins (48 kDa) were expressed in 80 and 60% of 15 HCCs examined respectively. The proteins of MAGE-1 and -3 were also expressed exclusively in HCCs regardless of the histological grading and clinical staging. Our results indicate that the detection of the genes by RT-PCR or the proteins by Western blotting is useful for differentiating early HCCs from non-cancerous lesions, and that the peptides derived from MAGE-1 and -3 proteins might be suitable targets for immunotherapy of human HCC. © 1999 Cancer Research Campaig

    Anti-HIV Activity Mediated by Natural Killer and CD8+ Cells after Toll-Like Receptor 7/8 Triggering

    Get PDF
    We previously found that triggering TLR7/8 either by single stranded HIV RNA or synthetic compounds induced changes in the lymphoid microenvironment unfavorable to HIV. In this study, we used selective TLR7 and 8 agonists to dissect their contribution to the anti-HIV effects. While triggering TLR7 inhibited efficiently HIV replication in lymphoid suspension cells from tonsillar origin, its effect was inconsistent in peripheral blood mononuclear cells (PBMC). In contrast, triggering TLR8 showed a very prominent and overall very consistent effect in PBMC and tonsillar lymphoid suspension cells. Depletion of dendritic cells (DC), Natural killer cells (NK) and CD8+ T-cells from PBMC resulted in the reversal of TLR8 induced anti-HIV effects. Especially noteworthy, depletion of either NK or CD8+ T-cells alone was only partially effective. We interpret these findings that DC are the initiator of complex changes in the microenvironment that culminates in the anti-HIV active NK and CD8+ effector cells. The near lack of NK and the low number of CD8+ T-cells in tonsillar lymphoid suspension cells may explain the lower TLR8 agonist's anti-HIV effects in that tissue. However, additional cell-type specific differences must exist since the TLR7 agonists had a very strong inhibitory effect in tonsillar lymphoid suspension cells. Separation of effector from the CD4+ target cells did not abolish the anti-HIV effects pointing to the critical role of soluble factors. Triggering TLR7 or 8 were accompanied by major changes in the cytokine milieu; however, it appeared that not a single soluble factor could be assigned for the potent effects
    • …
    corecore