599 research outputs found

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening

    Get PDF
    We present an calculation of the electronic and optical excitations of an isolated polythiophene chain as well as of bulk polythiophene. We use the GW approximation for the electronic self-energy and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain screening in the case of bulk polythiophene drastically reduces both the quasi-particle band gap and the exciton binding energies, but the optical gap is hardly affected. This finding is relevant for conjugated polymers in general.Comment: 4 pages, 1 figur

    Excitonic Effects on Optical Absorption Spectra of Doped Graphene

    Full text link
    We have performed first-principles calculations to study optical absorption spectra of doped graphene with many-electron effects included. Both self-energy corrections and electron-hole interactions are reduced due to the enhanced screening in doped graphene. However, self-energy corrections and excitonic effects nearly cancel each other, making the prominent optical absorption peak fixed around 4.5 eV under different doping conditions. On the other hand, an unexpected increase of the optical absorbance is observed within the infrared and visible-light frequency regime (1 ~ 3 eV). Our analysis shows that a combining effect from the band filling and electron-hole interactions results in such an enhanced excitonic effect on the optical absorption. These unique variations of the optical absorption of doped graphene are of importance to understand relevant experiments and design optoelectronic applications.Comment: 15 pages, 5 figures; Nano Lett., Article ASAP (2011

    Space-time evolution of electron cascades in diamond

    Full text link
    Here we describe model calculations to follow the spatio-temporal evolution of secondary electron cascades in diamond. The band structure of the insulator has been explicitly incorporated into the calculations as it affects ionizations from the valence band. A Monte-Carlo model was constructed to describe the path of electrons following the impact of a single electron of energy E 250 eV. The results show the evolution of the secondary electron cascades in terms of the number of electrons liberated, the spatial distribution of these electrons, and the energy distribution among the electrons as a function of time. The predicted ionization rates (5-13 electrons in 100 fs) lie within the limits given by experiments and phenomenological models. Calculation of the local electron density and the corresponding Debye length shows that the latter is systematically larger than the radius of the electron cloud. This means that the electron gas generated does not represent a plasma in a single impact cascade triggered by an electron of E 250 eV energy. This is important as it justifies the independent-electron approximation used in the model. At 1 fs, the (average) spatial distribution of secondary electrons is anisotropic with the electron cloud elongated in the direction of the primary impact. The maximal radius of the cascade is about 50 A at this time. As the system cools, energy is distributed more equally, and the spatial distribution of the electron cloud becomes isotropic. At 90 fs maximal radius is about 150 A. The Monte-Carlo model described here could be adopted for the investigation of radiation damage in other insulators and has implications for planned experiments with intense femtosecond X-ray sources.Comment: 26 pages, latex, 13 figure

    Molecular geometry optimization with a genetic algorithm

    Full text link
    We present a method for reliably determining the lowest energy structure of an atomic cluster in an arbitrary model potential. The method is based on a genetic algorithm, which operates on a population of candidate structures to produce new candidates with lower energies. Our method dramatically outperforms simulated annealing, which we demonstrate by applying the genetic algorithm to a tight-binding model potential for carbon. With this potential, the algorithm efficiently finds fullerene cluster structures up to C60{\rm C}_{60} starting from random atomic coordinates.Comment: 4 pages REVTeX 3.0 plus 3 postscript figures; to appear in Physical Review Letters. Additional information available under "genetic algorithms" at http://www.public.iastate.edu/~deaven

    Screening for Diabetes and Pre-Diabetes With Proposed A1C-Based Diagnostic Criteria

    Get PDF
    OBJECTIVE — An International Expert Committee (IEC) and the American Diabetes Asso-ciation (ADA) proposed diagnostic criteria for diabetes and pre-diabetes based on A1C levels. We hypothesized that screening for diabetes and pre-diabetes with A1C measurements would differ from using oral glucose tolerance tests (OGTT). RESEARCH DESIGN AND METHODS — We compared pre-diabetes, dysglycemia (diabetes or pre-diabetes), and diabetes identified by the proposed criteria (A1C 6.5 % for diabetes and 6.0–6.4 % [IEC] or 5.7–6.4 % [ADA] for high risk/pre-diabetes) with standard OGTT diagnoses in three datasets. Non-Hispanic white or black adults without known diabetes who had A1C and 75-g OGTT measurements were included from the prospective Screening for Impaired Glucose Tolerance study (n 1,581), and from the National Health and Nutrition Examination Survey (NHANES) III (n 2014), and NHANES 2005–2006 (n 1,111). RESULTS — OGTTs revealed pre-diabetes in 35.8 % and diabetes in 5.2 % of combined study subjects. A1C provided receiver operating characteristic (ROC) curve areas for diabetes of 0.79– 0.83, but ROC curve areas were 0.70 for dysglycemia or pre-diabetes. The proposed criteria missed 70 % of individuals with diabetes, 71–84 % with dysglycemia, and 82–94 % with pre

    Diagrammatic Quantum Monte Carlo for Two-Body Problem: Exciton

    Get PDF
    We present a novel method for precise numerical solution of the irreducible two-body problem and apply it to excitons in solids. The approach is based on the Monte Carlo simulation of the two-body Green function specified by Feynman's diagrammatic expansion. Our method does not rely on the specific form of the electron and hole dispersion laws and is valid for any attractive electron-hole potential. We establish limits of validity of the Wannier (large radius) and Frenkel (small radius) approximations, present accurate data for the intermediate radius excitons, and give evidence for the charge transfer nature of the monopolar exciton in mixed valence materials.Comment: 4 pages, 5 figure

    Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach

    Full text link
    We present a method for computing optical absorption spectra by means of a Bethe-Salpeter equation approach, which is based on a conserving linear response calculation for electron-hole coherences in the presence of an external electromagnetic field. This procedure allows, in principle, for the determination of the electron-hole correlation function self-consistently with the corresponding single-particle Green function. We analyze the general approach for a "one-shot" calculation of the photoabsorption cross section of finite systems, and discuss the importance of scattering and dephasing contributions in this approach. We apply the method to the closed-shell clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure

    Ab-initio prediction of the electronic and optical excitations in polythiophene: isolated chains versus bulk polymer

    Get PDF
    We calculate the electronic and optical excitations of polythiophene using the GW approximation for the electronic self-energy, and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. Two different situations are studied: excitations on isolated chains and excitations on chains in crystalline polythiophene. The dielectric tensor for the crystalline situation is obtained by modeling the polymer chains as polarizable line objects, with a long-wavelength polarizability tensor obtained from the ab-initio polarizability function of the isolated chain. With this model dielectric tensor we construct a screened interaction for the crystalline case, including both intra- and interchain screening. In the crystalline situation both the quasi-particle band gap and the exciton binding energies are drastically reduced in comparison with the isolated chain. However, the optical gap is hardly affected. We expect this result to be relevant for conjugated polymers in general.Comment: 15 pages including 4 figures; to appear in Phys. Rev. B, 6/15/200
    corecore