172 research outputs found

    Compaction control and related stress–strain behaviour of off-shore land reclamations with calcareous sands

    Get PDF
    AbstractWhen constructing off-shore land reclamations, one aims to ensure that the final soil mass fulfills certain minimal criteria related to shear strength, stiffness and resistance against liquefaction. In general, these characteristics improve with increasing density of the soil mass, which means that the above criteria are usually condensed into a single one: ‘adequate densification’.Quality control of reclamation constructions therefore focuses on the latter. Technical requirements are written based on one single parameter: the relative density Dr. On the site, this parameter is commonly determined indirectly using correlations with the cone penetration resistance qc, making the CPT the main tool for quality control.The paper presents data gathered during the design and construction of an off-shore land reclamation using calcareous sands. For this specific project, density control had to be done through the use of CPT.Calibration chamber tests were performed to establish the CPT qc–Dr correlation for the specific soil material. This correlation was used to analyse CPT results during construction of the site in order to determine the quality of compaction.In a further stage, an elaborate laboratory study was performed to establish additional correlations between soil parameters and the stress–strain parameters. Furthermore, seismic CPT tests were executed on the site to test the relevance of the laboratory correlations and the ‘relative density approach’ in general.It is shown that off-shore land reclamations have a very erratic stress-history, due to the different processes of depositing the soil material and the various densification methods. This stress-history is of great importance in the stress–strain behaviour of the site. Results also suggest that the CPT does not provide enough data to reliably predict soil stiffness when dealing with crushable materials. Specifically, in situ measurements show that there is no direct correlation between the small strain shear modulus G0 and qc

    Een prehistorische begraafplaats te Wijshagen (Gem. Meeuwen-Gruitrode)

    Get PDF

    Short communication: Determination of lactoferrin in Feta cheese whey with reversed-phase high-performance liquid chromatography

    Get PDF
    Abstract In the current paper, a method is introduced to determine lactoferrin in sweet whey using reversed-phase HPLC without any pretreatment of the samples or use of a separation technique. As a starting point, the most common HPLC protocols for acid whey, which included pretreatment of the whey along with a sodium dodecyl sulfate-PAGE step, were tested. By skipping the pretreatment and the separation steps while altering the gradient profile, different chromatographs were obtained that proved to be equally efficient to determine lactoferrin. For this novel 1-step reversed-phase HPLC method, repeatability was very high over a wide range of concentrations (1.88% intraday to 5.89% interday). The limit of detection was 35.46μg/mL [signal:noise ratio (S/N)=3], whereas the limit of quantification was 50.86μg/mL (S/N=10). Omitting the pretreatment step caused a degradation of the column's lifetime (to approximately 2,000 samples). As a result, the lactoferrin elution time changed, but neither the accuracy nor the separation ability of the method was significantly influenced. We observed that this degradation could be easily avoided or detained by centrifuging the samples to remove fat or by extensive cleaning of the column after every 5 samples

    The insecticide resistance status of malaria vectors in the Mekong region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge on insecticide resistance in target species is a basic requirement to guide insecticide use in malaria control programmes. Malaria transmission in the Mekong region is mainly concentrated in forested areas along the country borders, so that decisions on insecticide use should ideally be made at regional level. Consequently, cross-country monitoring of insecticide resistance is indispensable to acquire comparable baseline data on insecticide resistance.</p> <p>Methods</p> <p>A network for the monitoring of insecticide resistance, MALVECASIA, was set up in the Mekong region in order to assess the insecticide resistance status of the major malaria vectors in Cambodia, Laos, Thailand, and Vietnam. From 2003 till 2005, bioassays were performed on adult mosquitoes using the standard WHO susceptibility test with diagnostic concentrations of permethrin 0.75% and DDT 4%. Additional tests were done with pyrethroid insecticides applied by the different national malaria control programmes.</p> <p>Results</p> <p><it>Anopheles dirus s.s</it>., the main vector in forested malaria foci, was susceptible to permethrin. However, in central Vietnam, it showed possible resistance to type II pyrethroids. In the Mekong delta, <it>Anopheles epiroticus </it>was highly resistant to all pyrethroid insecticides tested. It was susceptible to DDT, except near Ho Chi Minh City where it showed possible DDT resistance. In Vietnam, pyrethroid susceptible and tolerant <it>Anopheles minimus s.l</it>. populations were found, whereas <it>An. minimus s.l</it>. from Cambodia, Laos and Thailand were susceptible. Only two <it>An. minimus s.l</it>. populations showed DDT tolerance. <it>Anopheles vagus </it>was found resistant to DDT and to several pyrethroids in Vietnam and Cambodia.</p> <p>Conclusion</p> <p>This is the first large scale, cross-country survey of insecticide resistance in <it>Anopheles </it>species in the Mekong Region. A unique baseline data on insecticide resistance for the Mekong region is now available, which enables the follow-up of trends in susceptibility status in the region and which will serve as the basis for further resistance management. Large differences in insecticide resistance status were observed among species and countries. In Vietnam, insecticide resistance was mainly observed in low or transmission-free areas, hence an immediate change of malaria vector control strategy is not required. Though, resistance management is important because the risk of migration of mosquitoes carrying resistance genes from non-endemic to endemic areas. Moreover, trends in resistance status should be carefully monitored and the impact of existing vector control tools on resistant populations should be assessed.</p

    Impact of insecticide-treated nets on wild pyrethroid resistant Anopheles epiroticus population from southern Vietnam tested in experimental huts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, the efficacy of insecticide-treated nets was evaluated in terms of deterrence, blood-feeding inhibition, induced exophily and mortality on a wild resistant population of <it>Anopheles epiroticus </it>in southern Vietnam, in order to gain insight into the operational consequences of the insecticide resistance observed in this malaria vector in the Mekong delta.</p> <p>Method</p> <p>An experimental station, based on the model of West Africa and adapted to the behaviour of the target species, was built in southern Vietnam. The study design was adapted from the WHO phase 2 guidelines. The study arms included a conventionally treated polyester net (CTN) with deltamethrin washed just before exhaustion, the WHO recommended long-lasting insecticidal net (LLIN) PermaNet 2.0<sup>® </sup>unwashed and 20 times washed and PermaNet 3.0<sup>®</sup>, designed for the control of pyrethroid resistant vectors, unwashed and 20 times washed.</p> <p>Results</p> <p>The nets still provided personal protection against the resistant <it>An. epiroticus </it>population. The personal protection ranged from 67% for deltamethrin CTN to 85% for unwashed PermaNet 3.0. Insecticide resistance in the <it>An. epiroticus </it>mosquitoes did not seem to alter the deterrent effect of pyrethroids. A significant higher mortality was still observed among the treatment arms despite the fact that the <it>An. epiroticus </it>population is resistant against the tested insecticides.</p> <p>Conclusion</p> <p>This study shows that CTN and LLINs still protect individuals against a pyrethroid resistant malaria vector from the Mekong region, where insecticide resistance is caused by a metabolic mechanism. In the light of a possible elimination of malaria from the Mekong region these insights in operational consequences of the insecticide resistance on control tools is of upmost importance.</p
    • …
    corecore