771 research outputs found

    Bound states of PT-symmetric separable potentials

    Full text link
    All of the PT-symmetric potentials that have been studied so far have been local. In this paper nonlocal PT-symmetric separable potentials of the form V(x,y)=iϵ[U(x)U(y)−U(−x)U(−y)]V(x,y)=i\epsilon[U(x)U(y)-U(-x)U(-y)], where U(x)U(x) is real, are examined. Two specific models are examined. In each case it is shown that there is a parametric region of the coupling strength ϵ\epsilon for which the PT symmetry of the Hamiltonian is unbroken and the bound-state energies are real. The critical values of ϵ\epsilon that bound this region are calculated.Comment: 10 pages, 3 figure

    Faster than Hermitian Quantum Mechanics

    Get PDF
    Given an initial quantum state |psi_I> and a final quantum state |psi_F> in a Hilbert space, there exist Hamiltonians H under which |psi_I> evolves into |psi_F>. Consider the following quantum brachistochrone problem: Subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time tau? For Hermitian Hamiltonians tau has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, tau can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from |psi_I> to |psi_F> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.Comment: 4 page

    Search for nearby Earth analogs I. 15 planet candidates found in PFS data

    Get PDF
    30 pages, 20 figures, 3 tables, accepted for publication in ApJSThe radial velocity (RV) method plays a major role in the discovery of nearby exoplanets. To efficiently find planet candidates from the data obtained in high-precision RV surveys, we apply a signal diagnostic framework to detect RV signals that are statistically significant, consistent in time, robust in the choice of noise models, and do not correlated with stellar activity. Based on the application of this approach to the survey data of the Planet Finder Spectrograph, we report 15 planet candidates located in 14 stellar systems. We find that the orbits of the planet candidates around HD 210193, 103949, 8326, and 71135 are consistent with temperate zones around these stars (where liquid water could exist on the surface). With periods of 7.76 and 15.14 days, respectively, the planet candidates around star HIP 54373 form a 1:2 resonance system. These discoveries demonstrate the feasibility of automated detection of exoplanets from large RV surveys, which may provide a complete sample of nearby Earth analogs.Peer reviewedFinal Accepted Versio

    Bacillus anthracis diversity in Kruger National Park [South Africa]

    Get PDF
    The Kruger National Park (KNP), South Africa, has a recorded history of periodic anthrax epidemics causing widespread disease among wild animals. Bacillus anthracis is the causative agent of anthrax, a disease primarily affecting ungulate herbivores. Worldwide there is little diversity among B. anthracis isolates, but examination of variable-number tandem repeat (VNTR) loci has identified six major clones, with the most dissimilar types split into the A and B branches. Both the A and B types are found in southern Africa, giving this region the greatest genetic diversity of B. anthracis worldwide. Consequently, southern Africa has been hypothesized to be the geographic origin of B. anthracis. In this study, the genotypic types of 98 KNP B. anthracis isolates were identified using multiple-locus VNTR analysis. Two major types are evident, the A branch and the B branch. The spatial and temporal distribution of the different genotypes indicates that anthrax epidemic foci are independent, though correlated through environmental cues. Kruger B isolates were found on significantly higher-calcium and higher-pH soils than were Kruger type A. This relationship between genotype and soil chemistry may be due to adaptive differences among divergent anthrax strains. While this association may be simply fortuitous, adaptation of A types to diverse environmental conditions is consistent with their greater geographic dispersal and genetic dissimilarity

    The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring

    Get PDF
    Calculations of equivalent length from an artificial advected tracer provide new insight into the isentropic transport processes occurring within the Antarctic stratospheric vortex. These calculations show two distinct regions of approximately equal area: a strongly mixed vortex core and a broad ring of weakly mixed air extending out to the vortex boundary. This broad ring of vortex air remains isolated from the core between late winter and midspring. Satellite measurements of stratospheric H2O confirm that the isolation lasts until at least mid-October. A three-dimensional chemical transport model simulation of the Antarctic ozone hole quantifies the ozone loss within this ring and demonstrates its isolation. In contrast to the vortex core, ozone loss in the weakly mixed broad ring is not complete. The reasons are twofold. First, warmer temperatures in the broad ring prevent continuous polar stratospheric cloud (PSC) formation and the associated chemical processing (i.e., the conversion of unreactive chlorine into reactive forms). Second, the isolation prevents ozone-rich air from the broad ring mixing with chemically processed air from the vortex core. If the stratosphere continues to cool, this will lead to increased PSC formation and more complete chemical processing in the broad ring. Despite the expected decline in halocarbons, sensitivity studies suggest that this mechanism will lead to enhanced ozone loss in the weakly mixed region, delaying the future recovery of the ozone hole

    Metabolic phenotype of male obesity-related secondary hypogonadism pre-replacementand post-replacement therapy with intra-muscular testosterone undecanoate therapy

    Get PDF
    Aim: To explore the metabolic phenotype of obesity-related Secondary Hypogonadism (SH) in men pre- and post-replacement therapy with long-acting intramuscular (IM) testosterone undecanoate (TU). Methods: A prospective observational pilot study on metabolic effects of TU IM in male obesity-related SH (Hypogonadal [HG] group, n=13), including baseline comparisons with controls (Eugonadal [EG] group, n=15). Half the subjects (n=7 in each group) had Type 2 Diabetes Mellitus (T2D). Baseline metabolic assessment on Human Metabolism Research Unit: fasting blood samples; BodPod (body composition), and; whole-body indirect calorimetry. The HG group was treated with TU IM therapy for 6-29 months (mean 14.8-months [SD 8.7]), and assessment at the Human Metabolism Research Unit repeated. T-test comparisons were performed between baseline and follow-up data (HG group), and between baseline data (HG and EG groups). Data reported as mean (SD). Results: Overall, TU IM therapy resulted in a statistically significant improvement in HbA1C (9mmol/mol, P=0.03), with 52% improvement in HOMA%B. Improvement in glycaemic control was driven by the HG subgroup with T2D, with 18mmol/mol [P=0.02] improvement in HbA1C. Following TU IM therapy, there was a statistically significant reduction in fat mass (3.5Kg, P=0.03) and increase in lean body mass (2.9Kg, P=0.03). Lipid profiles and energy expenditure were unchanged following TU IM therapy. Comparisons between baseline data for HG and EG groups were equivalent apart from differences in testosterone, SHBG and BMR. Conclusion: In men with obesity-related SH (including a subgroup with T2D), TU IM therapy improved glycaemic control, beta cell function and body composition

    Cm-Wavelength Total Flux and Linear Polarization Properties of Radio-Loud BL Lacertae Objects

    Full text link
    Results from a long-term program to quantify the range of behavior of the cm-wavelength total flux and linear polarization variability properties of a sample of 41 radio-loud BL Lac objects using weekly to tri-monthly observations with the University of Michigan 26-m telescope operating at 14.5, 8.0, and 4.8 GHz are presented; these observations are used to identify class-dependent differences between these BL Lacs and QSOs in the Pearson-Readhead sample. The BL Lacs are found to be more highly variable in total flux density than the QSOs, exhibiting changes that are often nearly-simultaneous and of comparable amplitude at 14.5 and 4.8 GHz in contrast to the behavior in the QSOs and supporting the existence of class-dependent differences in opacity within the parsec-scale jet flows. Structure function analyses of the flux observations quantify that a characteristic timescale is identifiable in only 1/3 of the BL Lacs. The time-averaged fractional linear polarizations are only on the order of a few percent and are consistent with the presence of tangled magnetic fields within the emitting regions. In many sources a preferred long-term orientation of the EVPA is present; when compared with the VLBI structural axis, no preferred position angle difference is identified. The polarized flux typically exhibits variability with timescales of months to a few years and shows the signature of a propagating shock during several resolved outbursts. The observations indicate that the source emission is predominately due to evolving source components and support the occurrence of more frequent shock formation in BL Lac parsec-scale flows than in QSO jets. The differences in variability behavior and polarization between BL Lacs and QSOs can be explained by differences in jet stability.Comment: 1 LaTex (aastex) file, 21 postscript figure files, 2 external LaTex table files. To appear in the Astrophysical Journa

    Modeling the Potential Distribution of Bacillus anthracis under Multiple Climate Change Scenarios for Kazakhstan

    Get PDF
    Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP) to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km2 and 8 km2 and a 6-variable BioClim data set at 8 km2. Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting ∼14–16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting ∼15% loss at 55 km2, ∼34% loss at 8 km2, and ∼30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B. anthracis

    Two extra-solar planets from the Anglo-Australian Planet Search

    Get PDF
    We report the detection of two new extra-solar planets from the Anglo-Australian Planet Search around the stars HD142 and HD23079. The planet orbiting HD142 has an orbital period of just under one year, while that orbiting HD23079 has a period of just under two years. HD142 falls into the class of "eccentric" gas giants. HD23079 lies in the recently uncovered class of "epsilon Ret-like" planets - extra-solar gas giant planets with near-circular orbits outside 0.1 a.u. The recent discovery of several more members of this class provides new impetus for the extension of existing planet searches to longer periods, in the search for Jupiter-like planets in Jupiter-like orbits.Comment: 6 pages, 4 figures and 3 tables include
    • …
    corecore