94 research outputs found

    PESTO: Proactively Secure Distributed Single Sign-On, or How to Trust a Hacked Server

    Get PDF
    Single Sign-On (SSO) is becoming an increasingly popular authentication method for users that leverages a trusted Identity Provider (IdP) to bootstrap secure authentication tokens from a single user password. It alleviates some of the worst security issues of passwords, as users no longer need to memorize individual passwords for all service providers, and it removes the burden of these service to properly protect huge password databases. However, SSO also introduces a single point of failure. If compromised, the IdP can impersonate all users and learn their master passwords. To remedy this risk while preserving the advantages of SSO, Agrawal et al. (CCS\u2718) recently proposed a distributed realization termed PASTA (password-authenticated threshold authentication) which splits the role of the IdP across nn servers. While PASTA is a great step forward and guarantees security as long as not all servers are corrupted, it uses a rather inflexible corruption model: servers cannot be corrupted adaptively and --- even worse --- cannot recover from corruption. The latter is known as proactive security and allows servers to re-share their keys, thereby rendering all previously compromised information useless. In this work, we improve upon the work of PASTA and propose a distributed SSO protocol with proactive and adaptive security (PESTO), guaranteeing security as long as not all servers are compromised at the same time. We prove our scheme secure in the UC framework which is known to provide the best security guarantees for password-based primitives. The core of our protocol are two new primitives we introduce: partially-oblivious distributed PRFs and a class of distributed signature schemes. Both allow for non-interactive refreshs of the secret key material and tolerate adaptive corruptions. We give secure instantiations based on the gap one-more BDH and RSA assumption respectively, leading to a highly efficient 2-round PESTO protocol. We also present an implementation and benchmark of our scheme in Java, realizing OAuth-compatible bearer tokens for SSO, demonstrating the viability of our approach

    High resilience of carbon transport in long-term drought-stressed mature Norway spruce trees within 2 weeks after drought release

    Get PDF
    Under ongoing global climate change, drought periods are predicted to increase in frequency and intensity in the future. Under these circumstances, it is crucial for tree\u27s survival to recover their restricted functionalities quickly after drought release. To elucidate the recovery of carbon (C) transport rates in c. 70-year-old Norway spruce (Picea abies [L.] KARST.) after 5 years of recurrent summer droughts, we conducted a continuous whole-tree 13^{13}C labeling experiment in parallel with watering. We determined the arrival time of current photoassimilates in major C sinks by tracing the 13^{13}C label in stem and soil CO2_{2} efflux, and tips of living fine roots. In the first week after watering, aboveground C transport rates (CTR) from crown to trunk base were still 50% lower in previously drought-stressed trees (0.16 ± 0.01 m h1^{-1}) compared to controls (0.30 ± 0.06 m h1^{-1}). Conversely, CTR below ground, that is, from the trunk base to soil CO2_{2} efflux were already similar between treatments (c. 0.03 m h1^{-1}). Two weeks after watering, aboveground C transport of previously drought-stressed trees recovered to the level of the controls. Furthermore, regrowth of water-absorbing fine roots upon watering was supported by faster incorporation of 13^{13}C label in previously drought-stressed (within 12 ± 10 h upon arrival at trunk base) compared to control trees (73 ± 10 h). Thus, the whole-tree C transport system from the crown to soil CO2_{2} efflux fully recovered within 2 weeks after drought release, and hence showed high resilience to recurrent summer droughts in mature Norway spruce forests. This high resilience of the C transport system is an important prerequisite for the recovery of other tree functionalities and productivity

    Dynamics of initial carbon allocation after drought release in mature Norway spruce—Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine‐root growth

    Get PDF
    After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew_{new}) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13^{13}C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew_{new} to growth and CO2_{2} efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2_{2} efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew_{new} to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew_{new} while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew_{new}, stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity

    Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress

    Get PDF
    To cope with the various environmental stresses resulting in reactive oxygen species (ROS) production plant metabolism is known to be altered specifically under different stresses. After overcoming the stress the metabolism should be reconfigured to recover basal operation however knowledge concerning how this is achieved is cursory. To investigate the metabolic recovery of roots following oxidative stress, changes in metabolite abundance and carbon flow were analysed. Arabidopsis roots were treated by menadione to elicit oxidative stress. Roots were fed with 13C labelled glucose and the redistribution of isotope was determined in order to study carbon flow. The label redistribution through many pathways such as glycolysis, the tricarboxylic acid (TCA) cycle and amino acid metabolism were reduced under oxidative stress. After menadione removal many of the stress-related changes reverted back to basal levels. Decreases in amounts of hexose phosphates, malate, 2-oxoglutarate, glutamate and aspartate were fully recovered or even increased to above the control level. However, some metabolites such as pentose phosphates and citrate did not recover but maintained their levels or even increased further. The alteration in label redistribution largely correlated with that in metabolite abundance. Glycolytic carbon flow reverted to the control level only 18 h after menadione removal although the TCA cycle and some amino acids such as aspartate and glutamate took longer to recover. Taken together, plant root metabolism was demonstrated to be able to overcome menadione-induced oxidative stress with the differential time period required by independent pathways suggestive of the involvement of pathway specific regulatory processes

    Evaluation of gait symmetry in poliomyelitis subjects : Comparison of a conventional knee ankle foot orthosis (KAFO) and a new powered KAFO.

    Get PDF
    Background: Compared to able-bodied subjects, subjects with post polio syndrome and poliomyelitis demonstrate a preference for weight-bearing on the non-paretic limb, causing gait asymmetry. Objectives: The purpose of this study was to evaluate the gait symmetry of the poliomyelitis subjects when ambulating with either a drop- locked knee ankle foot orthosis (KAFO) or a newly developed powered KAFO. Methods: Seven subjects with poliomyelitis who routinely wore conventional KAFOs participated in this study, and received training to enable them to ambulate with the powered KAFO on level ground, prior to gait analysis. Results: There were no significant differences in the gait symmetry index (SI) of step length (P=0.085), stance time (P=0.082), double limb support time (P=0.929) or speed of walking (p=0.325) between the two test conditions. However, using the new powered KAFO improved the SI in step width (P=0.037), swing time (P=0.014), stance phase percentage (P=0.008) and knee flexion during swing phase (p≤0.001) compared to wearing the dropped locked KAFO. Conclusion: The use of a powered KAFO for ambulation by poliomyelitis subjects affects gait symmetry in the base of support, swing time, stance phase percentage and knee flexion during swing phase

    Spatio-Temporal Dynamics of Human Intention Understanding in Temporo-Parietal Cortex: A Combined EEG/fMRI Repetition Suppression Paradigm

    Get PDF
    Inferring the intentions of other people from their actions recruits an inferior fronto-parietal action observation network as well as a putative social network that includes the posterior superior temporal sulcus (STS). However, the functional dynamics within and among these networks remains unclear. Here we used functional magnetic resonance imaging (fMRI) and high-density electroencephalogram (EEG), with a repetition suppression design, to assess the spatio-temporal dynamics of decoding intentions. Suppression of fMRI activity to the repetition of the same intention was observed in inferior frontal lobe, anterior intraparietal sulcus (aIPS), and right STS. EEG global field power was reduced with repeated intentions at an early (starting at 60 ms) and a later (∼330 ms) period after the onset of a hand-on-object encounter. Source localization during these two intervals involved right STS and aIPS regions highly consistent with RS effects observed with fMRI. These results reveal the dynamic involvement of temporal and parietal networks at multiple stages during the intention decoding and without a strict segregation of intention decoding between these networks

    narrating traditional iranian carpet merchants

    Get PDF
    Iranian carpet merchants developed a collective identitary narrative to enhance their capital creation in the social field of the German market, the field of Iranian foreign trade, and transnational bazari networks. This chapter goes beyond the practicalities of juggling resources across social fields: it explains the motivation behind this agency. Building on David Graeber's anthropology of value, as well as on studies about identity marketing and ethnic entrepreneurship, I show how the merchants' resources were evaluated between the 1950s and today to explain by which systems of value these social fields were shaped. From the confrontation between changing systems of value emerges Iranian carpet merchants' potential to increase the efficiency of their capital creation by—collectively—trying to redefine the meaning of their resources

    High resilience of carbon transport in long-term drought stressed mature Norway spruce trees within two weeks after drought release.

    No full text
    Under ongoing global climate change, drought periods are predicted to increase in frequency and intensity in the future. Under these circumstances, it is crucial for tree´s survival to recover their restricted functionalities quickly after drought release. To elucidate the recovery of carbon (C) transport rates in c. 70-year-old Norway spruce (Picea abies [L.] KARST.) after five years of recurrent summer droughts, we conducted a continuous whole-tree 13 C labeling experiment in parallel with watering. We determined the arrival time of current photoassimilates in major C sinks by tracing the 13 C label in stem and soil CO2 efflux, and tips of living fine roots. In the first week after watering, aboveground C transport rates from crown to trunk base were still 50% lower in previously drought-stressed trees (0.16 ± 0.01 m h-1 ) compared to controls (0.30 ± 0.06 m h-1 ). Conversely, C transport rates below ground, i.e. from the trunk base to soil CO2 efflux were already similar between treatments (c. 0.03 m h-1 ). Two weeks after watering, aboveground C transport of previously drought-stressed trees recovered to the level of the controls. Furthermore, regrowth of water-absorbing fine roots upon watering was supported by faster incorporation of 13 C label in previously drought-stressed (within 12 ± 10 h upon arrival at trunk base) compared to control trees (73 ± 10 h). Thus, the whole-tree C transport system from the crown to soil CO2 efflux fully recovered within two weeks after drought release, and hence showed high resilience to recurrent summer droughts in mature Norway spruce forests. This high resilience of the C transport system is an important prerequisite for the recovery of other tree functionalities and productivity
    corecore