16 research outputs found

    Prevalence of other autoimmune diseases in polyglandular autoimmune syndromes type II and III

    Get PDF
    Polyglandular autoimmune syndromes (PAS) are complex, heterogeneous disorders in which various autoimmune diseases can occur, affecting both endocrine and non-endocrine organs. In this meta-analysis, the prevalence of associated autoimmune disorders was investigated in PAS II and III.A comprehensive search in MEDLINE and Embase databases identified 479 studies with the keywords of PAS II and PAS III. 18 records containing a total of 1312 patients fulfilled our inclusion criteria (original studies reporting at least 10 cases and containing the combination of other autoimmune disorders) and were selected for further analysis. A meta-analysis of prevalence was performed using the random-effects model with the calculation of 95% confidence intervals (CI). Results of each meta-analysis were displayed graphically using forest plots.Distinction between PAS II and PAS III was made in 842 cases, of which 177 and 665 were PAS II and III (21.1 vs 78.9%), respectively. The prevalence of Hashimoto's thyroiditis was significantly higher than that of Graves's disease (39% [95% CI 17-65%] vs. 4% [95% CI 0-10%], respectively; p = 0.001). In PAS II, Addison's disease (AD) coexisted with AITDs, T1DM or the combination of these conditions in 65, 18 and 10% of cases, respectively. In addition, one other endocrine and five non-endocrine organ-specific autoimmune disorders were reported. In PAS III, two other autoimmune endocrinopathies, six non-endocrine organ-specific, and four systemic autoimmune disorders were found in combination with AITDs.AITDs, T1DM and AD are the most common combinations in PAS, thus screening for these conditions seems to be reasonable

    The declining occurrence of moose ( Alces alces

    No full text
    The border region between Austria, the Czech Republic, and Germany harbors the most south-western occurrence of moose in continental Europe. The population originated in Poland, where moose survived, immigrated from former Soviet Union or were reintroduced after the Second World War expanded west and southwards. In recent years, the distribution of the nonetheless small Central European population seems to have declined, necessitating an evaluation of its current status. In this study, existing datasets of moose observations from 1958 to 2019 collected in the three countries were combined to create a database totaling 771 records (observations and deaths). The database was then used to analyze the following: (a) changes in moose distribution, (b) the most important mortality factors, and (c) the availability of suitable habitat as determined using a maximum entropy approach. The results showed a progressive increase in the number of moose observations after 1958, with peaks in the 1990s and around 2010, followed by a relatively steep drop after 2013. Mortality within the moose population was mostly due to human interactions, including 13 deadly wildlife-vehicle collisions, particularly on minor roads, and four animals that were either legally culled or poached. Our habitat model suggested that higher altitudes (ca. 700–1,000 m a.s.l.), especially those offering wetlands, broad- leaved forests and natural grasslands, are the preferred habitats of moose whereas steep slopes and areas of human activity are avoided. The habitat model also revealed the availability of large core areas of suitable habitat beyond the current distribution, suggesting that habitat was not the limiting factor explaining the moose distribution in the study area. Our findings call for immediate transboundary conservation measures to sustain the moose population, such as those aimed at preventing wildlife-vehicle collisions and illegal killings. Infrastructure planning and development activities must take into account the habitat requirements of moose.publishedVersio
    corecore