1,016 research outputs found
Recommended from our members
Modelling the joint distribution of competing risks survival times using copula functions
The problem of modelling the joint distribution of survival times in a competing risks model, using copula functions is considered. In order to evaluate this joint distribution and the related overall survival function, a system of non-linear differential equations is solved, which relates the crude and net survival functions of the modelled competing risks, through the copula. A similar approach to modelling dependent multiple decrements was applied by Carriere (1994) who used a Gaussian copula applied to an incomplete double decrement model which makes it difficult to calculate any actuarial functions and draw relevant conclusions. Here, we extend this methodology by studying the effect of complete and partial elimination of up to four competing risks on the overall survival function, the life expectancy and life annuity values. We further investigate how different choices of the copula function affect the resulting joint distribution of survival times and in particular the actuarial functions which are of importance in pricing life insurance and annuity products. For illustrative purposes, we have used a real data set and used extrapolation to prepare a complete multiple decrement model up to age 120. Extensive numerical results illustrate the sensitivity of the model with respect to the choice ofcopula and its parameter(s)
Recommended from our members
Automatic, computer aided geometric design of free-knot, regression splines
A new algorithm for Computer Aided Geometric Design of least squares (LS) splines with variable knots, named GeDS, is presented. It is based on interpreting functional spline regression as a parametric B-spline curve, and on using the shape preserving property of its control polygon. The GeDS algorithm includes two major stages. For the first stage, an automatic adaptive, knot location algorithm is developed. By adding knots, one at a time, it sequentially "breaks" a straight line segment into pieces in order to construct a linear LS B-spline fit, which captures the "shape" of the data. A stopping rule is applied which avoids both over and under fitting and selects the number of knots for the second stage of GeDS, in which smoother, higher order (quadratic, cubic, etc.) fits are generated. The knots appropriate for the second stage are determined, according to a new knot location method, called the averaging method. It approximately preserves the linear precision property of B-spline curves and allows the attachment of smooth higher order LS B-spline fits to a control polygon, so that the shape of the linear polygon of stage one is followed. The GeDS method produces simultaneously linear, quadratic, cubic (and possibly higher order) spline fits with one and the same number of B-spline regression functions. The GeDS algorithm is very fast, since no deterministic or stochastic knot insertion/deletion and relocation search strategies are involved, neither in the first nor the second stage. Extensive numerical examples are provided, illustrating the performance of GeDS and the quality of the resulting LS spline fits. The GeDS procedure is compared with other existing variable knot spline methods and smoothing techniques, such as SARS, HAS, MDL, AGS methods and is shown to produce models with fewer parameters but with similar goodness of fit characteristics, and visual quality
Recommended from our members
Dependent competing risks: Cause elimination and its impact on survival
The dependent competing risks model of human mortality is considered, assuming that the dependence between lifetimes is modelled by a multivariate copula function. The effect on the overall survival of removing one or more causes of death is explored under two alternative definitions of removal, ignoring the causes and eliminating them. Under the two definitions of removal, expressions for the overall survival functions in terms of the specified copula (density) and the net (marginal) survival functions are given. The net survival functions are obtained as a solution to a system of non-linear differential equations, which relates them through the specified copula (derivatives) to the crude (sub-) survival functions, estimated from data. The overall survival functions in a model with four competing risks, cancer, cardiovascular diseases, respiratory diseases and all other causes grouped together, have been implemented and evaluated, based on cause-specific mortality data for England and Wales published by the Office for National Statistics, for the year 2007. We show that the two alternative definitions of removal of a cause of death have different effects on the overall survival and in particular on the life expectancy at birth and at age 65, when one, two or three of the competing causes are removed. An important conclusion is that the eliminating definition is better suited for practical use in competing risks’ applications, since it is more intuitive, and it suffices to consider only positive dependence between the lifetimes which is not the case under the alternative ignoring definition
Recommended from our members
Improved estimation of mortality and life expectancy for each constituent country of the UK and beyond
Graduated period life tables for men and women, based on the mortality experience of the population of England and Wales, have been published by the Office for National Statistics (ONS) using data from the 2001 Census. These tables are the sixteenth in a series known as the English Life Tables which are associated with decennial population censuses, beginning with the Census of 1841. Errors in crude census data owing to the small numbers of deaths involved, particularly in childhood and at very advanced ages, can be reduced by a statistical process of smoothing. A smoothing methodology developed at Cass Business School, City University London has been used in the latest ONS Decennial Life Tables. The tables show the increasing longevity of the population of England and Wales over a long period. The impact of this research is broad as life tables are used extensively in pensions planning, demography, insurance, economics and medicine. Life tables using this statistical smoothing methodology have also been prepared for Scotland, Northern Ireland, the Republic of Ireland and Canad
Recommended from our members
Geometrically designed, variable knot regression splines: variation diminish optimality of knots
A new method for Computer Aided Geometric Design of variable knot regression splines, named GeDS, has recently been introduced by Kaishev et al. (2006). The method utilizes the close geometric relationship between a spline regression function and its control polygon, with vertices whose y-coordinates are the regression coefficients and whose x-coordinates are certain averages of the knots, known as the Greville sites. The method involves two stages, A and B. In stage A, a linear LS spline fit to the data is constructed, and viewed as the initial position of the control polygon of a higher order (n > 2) smooth spline curve. In stage B, the optimal set of knots of this higher order spline curve is found, so that its control polygon is as close to the initial polygon of stage A as possible, and finally the LS estimates of the regression coefficients of this curve are found. In Kaishev et al. (2006) the implementation of stage A has been thoroughly addressed and the pointwise asymptotic properties of the GeD spline estimator have been explored and used to construct asymptotic confidence intervals.
In this paper, the focus of the attention is at giving further insight into the optimality properties of the knots of the higher order spline curve, obtained in stage B so that it is nearly a variation diminishing (shape preserving) spline approximation to the linear fit of stage A. Error bounds for this approximation are derived. Extensive numerical examples are provided, illustrating the performance of GeDS and the quality of the resulting LS spline fits. The GeDS estimator is compared with other existing variable knot spline methods and smoothing techniques and is shown to perform very well, producing nearly optimal spline regression models. It is fast and numerically efficient, since no deterministic or stochastic knot insertion/deletion and relocation search strategies are involved
Recommended from our members
Geometrically designed, variable know regression splines: asymptotics and inference
A new method for Computer Aided Geometric Design of least squares (LS) splines with variable knots, named GeDS, is presented. It is based on the property that the spline regression function, viewed as a parametric curve, has a control polygon and, due to the shape preserving and convex hull properties, closely follows the shape of this control polygon. The latter has vertices, whose x-coordinates are certain knot averages, known as the Greville sites and whose y-coordinates are the regression coefficients. Thus, manipulation of the position of the control polygon and hence of the spline curve may be interpreted as estimation of its knots and coefficients. These geometric ideas are implemented in the two stages of the GeDS estimation method. In stage A, a linear LS spline fit to the data is constructed, and viewed as the initial position of the control polygon of a higher order (n > 2) smooth spline curve. In stage B, the optimal set of knots of this higher order spline curve is found, so that its control polygon is as close to the initial polygon of stage A as possible and finally, the LS estimates of the regression coefficients of this curve are found. To implement stage A, an automatic adaptive knot location scheme for generating linear spline fits is developed. At each step of stage A, a knot is placed where a certain bias dominated measure is maximal. This stage is equipped with a novel stopping rule which serves as a model selector. The optimal knots defined in stage B ensure that the higher order spline curve is nearly a variation diminishing (i.e., shape preserving) spline approximation to the linear fit of stage A. Error bounds for this approximation are derived in Kaishev et al. (2006). The GeDS method produces simultaneously linear, quadratic, cubic (and possibly higher order) spline fits with one and the same number of B-spline regression functions.
Large sample properties of the GeDS estimator are also explored, and asymptotic normality is established. Asymptotic conditions on the rate of growth of the knots with the increase of the sample size, which ensure that the bias is of negligible magnitude compared to the variance of the GeD estimator, are given. Based on these results, pointwise asymptotic confidence intervals with GeDS are also constructed and shown to converge to the nominal coverage probability level for a reasonable number of knots and sample sizes
Recommended from our members
Geometrically designed, variable knot regression splines
A new method of Geometrically Designed least squares (LS) splines with variable knots, named GeDS, is proposed. It is based on the property that the spline regression function, viewed as a parametric curve, has a control polygon and, due to the shape preserving and convex hull properties, it closely follows the shape of this control polygon. The latter has vertices whose x-coordinates are certain knot averages and whose y-coordinates are the regression coefficients. Thus, manipulation of the position of the control polygon may be interpreted as estimation of the spline curve knots and coefficients. These geometric ideas are implemented in the two stages of the GeDS estimation method. In stage A, a linear LS spline fit to the data is constructed, and viewed as the initial position of the control polygon of a higher order (n > 2) smooth spline curve. In stage B, the optimal set of knots of this higher order spline curve is found, so that its control polygon is as close to the initial polygon of stage A as possible and finally, the LS estimates of the regression coefficients of this curve are found. The GeDS method produces simultaneously linear, quadratic, cubic (and possibly higher order) spline fits with one and the same number of B-spline coefficients. Numerical examples are provided and further supplemental materials are available online
Statistical Inference in a Directed Network Model with Covariates
Networks are often characterized by node heterogeneity for which nodes
exhibit different degrees of interaction and link homophily for which nodes
sharing common features tend to associate with each other. In this paper, we
propose a new directed network model to capture the former via node-specific
parametrization and the latter by incorporating covariates. In particular, this
model quantifies the extent of heterogeneity in terms of outgoingness and
incomingness of each node by different parameters, thus allowing the number of
heterogeneity parameters to be twice the number of nodes. We study the maximum
likelihood estimation of the model and establish the uniform consistency and
asymptotic normality of the resulting estimators. Numerical studies demonstrate
our theoretical findings and a data analysis confirms the usefulness of our
model.Comment: 29 pages. minor revisio
The self-inflicted dermatoses: A critical review
The self-inflicted dermatoses, namely dermatitis artefacta, neurotic excoriations, and trichotillomania, have been reported to be associated with various degrees of psychopathology in the dermatologic literature, but have received surprisingly little emphasis in the psychiatric literature. This probably reflects, firstly the fact that most of these patients initially deny any psychologic problems and hence may not receive psychiatric interventions, and secondly a lack of adequate collaboration between the psychiatrist and dermatologist. These disorders may be associated with serious sequelae, such as suicide and repeated major surgical procedures. Their treatment is also primarily psychiatric. This article critically reviews the literature and comments upon the salient clinical features and treatments for these disorders, which are relevant for the psychiatrist doing consultation-liaison work. Knowledge of these disorders is important in the evaluation of any psychiatric patient, as these disorders are essentially a cutaneous sign of psychopathology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26860/1/0000425.pd
- …