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Geometrically designed, variable
knot regression splines: Variation
diminishing optimality of knots

by

Vladimir K. Kaishev, Dimitrina S. Dimitrova, Steven Haberman
and Richard Verrall

Cass Business Schooal, City University, London

Summary

A new method for Computer Aided Geometric Design of variable knot regression splines, named GeDS, has
recently been introduced by Kaishev et al. (2006). The method utilizes the close geometric relationship
between a spline regression function and its control polygon, with vertices whosardinates are the
regression coefficients and whogecoordinates are certain averages of the knots, known as the Greville
sites. The method involves two stages, A and B. In stage A, a linear LS spline fit to the data is constructed,
and viewed as the initial position of the control polygon of a higher order2() smooth spline curve. In

stage B, the optimal set of knots of this higher order spline curve is found, so that its control polygon is as
close to the initial polygon of stage A as possible, and finally the LS estimates of the regression coefficients
of this curve are found. In Kaishev et al. (2006) the implementation of stage A has been thoroughly
addressed and the pointwise asymptotic properties of the GeD spline estimator have been explored and used
to construct asymptotic confidence intervals.

In this paper, the focus of the attention is at giving further insight into the optimality properties of the knots

of the higher order spline curve, obtained in stage B so that it is nearly a variation diminishing (shape
preserving) spline approximation to the linear fit of stage A. Error bounds for this approximation are

derived. Extensive numerical examples are provided, illustrating the performance of GeDS and the quality
of the resulting LS spline fits. The GeDS estimator is compared with other existing variable knot spline

methods and smoothing techniques and is shown to perform very well, producing nearly optimal spline
regression models. It is fast and numerically efficient, since no deterministic or stochastic knot

insertion/deletion and relocation search strategies are involved.

Keywords:spline regression, B-splines, Greville abscissae, variable knot splines, control polygon, asymp-
totic confidence interval
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1. Introduction.

Consider the problem of nonparametric spline regression estimation in which, a response
variabley is related to an independent variakke [a, b], through the functional relation-
ship

y=fX+ e, (1)
wheree is a random error variable with zero mean drid) is an unknown function,

approximated with &-th order (degre@— 1) polynomial splinef (tx n; X). The latter is
defined on the set of knots

tk’n = {tl = ...= tn =a< tn+1 <..< trH_k < tn+k+1 = b = ...= t2n+k} (2)
as
f (tin; %) = 0" Np() = T3 6 Nin(X), (3)
where 6=(6y, ...,0p)" is the vector of regression coefficients and
Nn(X) = (N1n(X), ...,Npn(X)', p= n+k, are the B-splines of order. B-splines are

defined orty , through the Mansfield-De Boor-Cox recurrence relation

1 if t=st<tiq

N; 1(t) = .,

a0 {O otherwise
Nin() = o Nina® + 727 Niggpa (). 4)

from which it can be seen thif,(t) = O fort ¢ [t;, ti.n]. In the sequel, where necessary,
we will emphasize the dependence of the spline regresstpr X) on 6 by using the
alternative notatiorf (tx,, €; X). The nonparametric spline regression problem is then to
estimate the degree of the splimeg, the number of the knotk, their location and the
regression coefficientd, based on a sample of observatic{q;rs)i’\i1 at some design

points{x }Y; .

Several different nonparametric spline approximation methods can be outlined. Under
the direct approacin andk are considered fixed (but unknown), and the kmgisare
assumed to be unknown parameters which have to be estimated by solving a non-linear
least squares optimization problem (see DeBoor and Rice (1968), Jupp (1978), Hu
(1993) and Lindstrom (1999)), based on the sam}qleq}i’il. There are a number of
difficulties related to this approach which have been pointed out by Jupp (1978) and
Lindstrom (1999). All these difficulties have been shortly summarized by Carl DeBoor ,
who writes, "...it is essentially impossible to characterize a best approximation, that is to
give a computationally useful criteria by which a best approximation can be recognized
and distinguished from other approximations"” (see DeBoor 2001, page 239).

As an alternative to the non-linear approach, adaptive knot selection procedures, such as
step-wise knot inclusion/deletion strategies, have been developed by Smith (1982),
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Friedman and Silverman (1989), Friedman (1991), Stone et al. (1997) and more recently
by Zhou and Shen (2001), where some drawbacks of this approach have been pointed
out.

Another group of works applies reversible jump Markov chain Monte Carlo (RIMCMC)
based methods to develop Bayesian adaptive splines, such as those of Smith and Kohn
(1996), Denison et al. (1998) and Biller (2000), in the context of generalized linear
models. These procedures simulate tens of thousands of spline models, which are then
averaged point-wise, to produce a resulting estimafe ®@hese methods are thus associ-

ated with a high computational cost and the inconvenience of having the resulting model
in a non-explicit form. A stochastic optimization algorithm for free-knot splines, called
adaptive genetic splines (AGS), was recently proposed by Pittman (2002) but the related
computational cost is also a concern, as noted by the author.

Smoothing spline fitting methods, involving a smoothing penalty in the objective func-
tion have also been proposed in the statistical literature. We will mention here the hybrid
adaptive splines (HAS) of Luo and Wahba (1997) and the penalized splines, considered
by Eubank (1988), Wahba (1990), Marx and Eilers (1996), Rupert and Carroll (2000),
Rupert (2002) and Wood (2003). Some asymptotic results, related to spline regression
estimation are due to Agarwal and Studden (1980) and more recently to Huang (2003),
where other references can be found.

Recently, a geometrically motivated method of variable knot spline regression estima-
tion, which is new and very different from the existing methods, has been proposed by
Kaishev et al. (2006). It is based on the so called Schoenberg's variation diminishing
spline (VDS) approximation scheme, applied to the knot selection problem. The VDS
approximation has some nice geometric properties sudhagse preservatignwhich

have made it fundamental in developing the Computer Aided Geometric Design
(CAGD) methodology. These properties have been essential in developing the new
variable-knot spline regression estimation method of Kaishev et al. (2006), called Geo-
metrically Designed (GeD) spline estimation or simply GeDS. The latter produces a
spline fit which is a least squares estimate with respect to its regression coefficients, but
whose knots are placed in such a way that the fit has also the characteristics of a VDS
approximation.

The purpose of this paper is to give some further insight into the optimality properties of

the knot placement proposed by Kaishev et al. (2006), to explore further the pointwise
asymptotic properties and related confidence intervals and the numerical performance of
the proposed GeD spline estimator and compare it with other existing spline estimators.

The paper is organized as follows. In Sections 2 we recall some important geometric
properties of the B-spline regression which have motivated the introduction of GeD
spline estimation and are related to the Schoenberg's variation diminishing splines. Thus,
Section 2.2 summarizes and extends the discussion presented in Kaishev et al. (2006), of
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the fact that a spline regression function has a control polygon, and by manipulating the
position of its vertexes it is possible to estimate the location of the knots and the regres-
sion coefficients. Section 3 gives a brief outline of the two stages A and B of the GeD
spline regression estimation method and provides further comments on the solution of
the constrained minimization problem of stage B. The optimality properties of the knots
of the higher order spline regression model, obtained in stage B are discussed and
explored in Section 4. These knots are such that their related higher order spline curve is
nearly a variation diminishing approximation to the control polygon of stage A. Bounds
for its deviation from the variation diminishing approximation are established by Theo-
rem 1 and its Corollaries 1.1 and 1.2, in Section 4. In Section 4.1 the averaging knot
location method, proposed in Kaishev et al. (2006), which gives good approximate
values of the optimal knots of stage B, is revisited. It is shown that it leads to bounds,
given by Theorem 2 and Corollaries 2.1 and 2.2, which are sharper than those estab-
lished by Theorem 1 and its corollaries. Section 5 gives a summary of the pointwise
asymptotic properties of GeDS, including the construction of asymptotic confidence
intervals. In Section 6, six numerical examples are presented, on which the GeDS
method is thoroughly tested and compared with other existing spline approximation
methods. Proofs of the theorems and their corollaries are given in the Appendix.

2. Geometric interpretation of the spline regression estimation.

Since our main purpose in this paper is to explore the optimality properties of the knots,
placed according to the GeD spline regression method of Kaishev et al. (2006), we will
first review its basic characteristics and give a short description of it. The method is
motivated by the observation that the spline regresSit, 6; x) introduced in (3) as

a function of an independent variabte= [a, b] can be viewed as a special case of a
parametric spline curve. A parametric spline cu@¢® is given coordinate-wise as

QM) = {X(), YO} = {Z21& Nin®), 216 Nin(®)},

wheret is a parameter, anxit) and y(t) are spline functions, defined on one and the
same set of knotg,. In view of the identity

X0 = Z21& Nin(®) =1, (5)
known as linear precision property, withdefined as the averages

E =i+ . +tn)/(N=1),i=1, ..,p. (6)
of then—-1 consecutive knott,,, ...,ti,n_1, We can express a spline regression func-
tion f(txn, 6; 1), t € [a, b], as

Q(t) = {t, f(tun, 6; D} = {Z21 & Nin(®), X216 Nin®)}, 7)
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i.e., f(tkn, 6; X), X [a, b] can be equivalently expressed in a parametric form as a
spline regression cun@’(x).

The valuest) given by (6) are known as the Greville abscissae. We will alternatively
use the notatioré*(tx,), to indicate the dependence of the set of Greville sites

£ ={&, ....&) = E(tn) on the knotdy .

Based on this parametric interpretation, it has been noted by Kaishev et al. (2006) that
Q*(t) can be characterized by a polyg0g, which is closely related to it and is called

its control polygon The vertices of the control polygon, calledntrol points,are the
points,c;, whosex- andy-coordinates are correspondingly the Greville sfteand the
B-spline regression coefficieng, i.e.,c = (&, 6),1 =1, ..., p. This close relationship
between the spline regression curve and its control points is discussed and illustrated in
Section 2.2. Due to the partition of unity property of B-splines,

Zijzj_n+l Nin(t) =1, foranyt e [tj, tj;1), j=n, ...,n+K,

every point of the spline regression cu@Q&t) of ordern is a convex combination of
control pointsc, i.e.,Q*(t) = ZF:jj'l C Nin(t) forte [thyj-1, tasjl, j =1, ..., K+ 1. This
means that each polynomial segmen@ut) lies within the convex hull of the control
points,c;j, ...,Cjsn-1, ] =1, ...,k+1, defining it (see Section 2.2). The convex hull of
Cj, ....Cjn-1 IS the smallest convex polygon, enclosing these points.

In fact, the control polygoiCy: with verticesc; = (&, 6)) is itself a linear spline func-
tion, and hence can be expressed as

Cor®) = (X1 & Nia), 216 Ni2)) = {t, Z21 6 Ni20)) = 3216 Niod) . (8)
In (8), X21& Nio(t) =t sinceN;,(t) are defined over the knots_,», wheret; = ¢7,
tor2 =& andti,y =&, i =1, ..., p and the linear precision property (5) applies.

SinceQ*(t) is a convex combination of its control points, its graph lies within the con-
vex hull of its control polygoi€y. Moreover, as has been pointed out by Kaishev et al.
(2006), the spline regression cur@(t) lies close to its control polygo@q also
becauseQ*(t) is theshape preservingschoenberg's VDS approximation @-. Since

the concept of VDS approximation to a functigndefined ona, b] is central in deriv-

ing the optimality properties of the GeDS knots, we will recall its definition and basic
properties.

2.1. Schoenberg's variation diminishing spline approximation.

Given a set of knot&,, a functiong, defined on[a, b], can be approximated by the
spline function

VIgl 0 = 221 9E) Nin(), 9)
whereé, i =1, 2, ...,p arethe Greville abscissae, obtained frtyn, using (6).
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The splineV|[g] is known as the Schoenberg's variation diminishing spline approxima-
tion of ordern to g, on the set of knot . It is constructed by simply evaluatiggat

the Greville sites (6) and taking the valugs’) as the B-spline coefficients. Tharia-

tion diminishingcharacter of (9) is due to the fact thdig] crosses any straight line at
most as many times as does the funcgatself. The latter suggests the following proper-
ties, which justify the importance of the VDS approximation in CAGD applications.

Property 1 (Shape preservation).The VDS approximation ishape preservingince it
preserves the shape of the functmnt approximates. More precisely, gf is positive,
thenV[g] is also positive; ifg is monotone, theNV[g] is also monotone; and @ is
convex,V[g] is also convex.

Property 2 (Reproduction of straight lines). The VDS approximation reproduces any
straight linel(t), t € [a, b]. In particular, V[t] = t, which follows from the linear preci-
sion property (5).

We will see in Section 3 that the way knots are found in stage B allows the GeD spline
approximation to incorporate the features of a VDS approximation. Properties 1 and 2
are also used in the next section to show the closeness of a spline regression curve to its
control polygon, a fact essentially used to motivate the GeDS estimation method. Fur-
ther details on geometric modelling with splines and related results are to be found in
Farin (2002).

2.2. The spline regression curve and its control points.

Since the graph a®*(t) lies within the convex hull of its control polyg@hy and since
Q'(t) is the shape preservingSchoenberg's VDS approximation G-, (as follows
from Property 1, Section 2.1, takimp= Cq+), the spline regression curg@(t) closely
follows the shape o€q-. We illustrate the shape preserving and convex hull properties
in Fig. 1 where functional spline regression cun@st), of ordern=3 andn=4 and
their control polygonsCq-, are plotted. The grey areas in Fig. 1 are the two convex
hulls, formed byc,, cs, ¢s for the quadratic curve (left panel) aogl ¢4, Cs, cg for the
cubic curve (right panel) within which the corresponding segme@t @f for t € [tg, t7]

lie.

Note that a linear spline curé@t) (ordern = 2) coincides with its control polygoGg.

In the quadratic cag@a = 3), the spline curv&)(t), evaluated at the knotg t4, ..., 1.4,
interpolatesCq and is tangential to each of its segmeqts;;.1, dividing it in a propor-

tion (tizo —tiy1): (tizs—tiz2), i =1, ...,.k+2. This is illustrated in the left panel of Fig.

1, for the case ok =3, whereA; =tj.1 —t;j, j =3, ...k+ 3. In the cubic caseh = 4),

the spline curve evaluated at a kn@Qtti.3) is somewhere within the triangle of points
G, CGis1C2,i=1,2, ...,p, as can be seen from the right panel of Fig. 1. Hence, the
higher is the degree, the stronger is the curve's deviation from its control p@ygon
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but it still remains within the convex hull . This suggests that a quadratic B-spline
curve is very well suited as a compromise between smoothness and shape preservation.

02=03 0,=03

g &L b & b & b & & & & &t t6&s & &
a=t;=t,=t3 t;=tg :tgzb a=t;=t,=t3=t, t;=tg=tgy =t19=b

Fig. 1. Quadratic (left panel) and cubic (right panel) functional spline curves Q*(t) and their control
polygons Cg- .

The close geometric relationship between the spline regression curve
Q' (¥ = {X, f(tkn, ; X)}, xe [a, b], and its control polygoiCs . ¢.x, is the foundation

of the GeDS method, proposed in Kaishev et al. (2006). Here, we briefly summarize the
logic behind this new geometrically motivated estimation approach. Sincedberdi-

nates of the vertices; = (&, 6), i =1, ...p, of Csy,0x are the Greville sitess,
obtained fronty ,, and they-coordinates are the regression coefficightestimation of

t«, and@, based only;, x;}\,, affects the geometric position of the control polygon
Cttno0- On the other hand, due to the shape preserving and convex hull properties,
Cr 0% defines the location and the shape of the spline clittyg, 6; x). So, manipu-

lating the vertices; of Ct,, 6, affects the knotg, through (6), and the regression
coefficients@, which affects the position of the regression cut¢gy, 6; X) itself. The

latter conclusion has motivated the construction, in stage A of GeDS, of a control poly-
gon as a linear least squares spline fit to the data, whose knots determine thg,knots
and whose B-spline coefficients, are viewed as initial estimafe which is improved
further in stage B (see Section 3). This is the basis of the approach which has been used
by Kaishev et al. (2006) in constructing GeD variable knot spline approximation to the
unknown functionf in (1). The GeDS method is briefly described in the next Section 3.

3. The GeD spline regression estimation method.

In this section we will briefly outline the two stages of the GeD spline regression
method, introduced in Kaishev et al. (2006), following the considerations of Sections 2.
In stage A an appropriate control polygon in the form of a piece-wise linear LS fit which
captures the shape of the data is constructed by starting with a straight line fit and add-
ing knots where the current fit deviates most from the data. The rule for positioning the
knots, the stopping rule for terminating this process and a complete description of the
algorithm of stage A are given in Kaishev et al. (2006). The result of stage A is a piece-
wise linear LS spline fit which is viewed as the initial position of the control polygon of
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a smooth, higher order LS spline fit, obtained in stage B. In stage B a smooth LS spline
fit to the data which closely follows the shape of the piece-wise linear fit from stage A is
constructed. To achieve this, the knots of the latter linear fit are used to locate the knots
of a functional spline curve, which is not an LS fit to the data, but which does follow the
shape of the linear fit from stage A in the sense that it is nearly a VDS approximation to
it. Then, its B-spline coefficients are adjusted in order to ensure that it is an LS fit. In
Kaishev et al. (2006) stages A and B have been given the following more formal defini-
tion as certain optimization problems.

Stage A Fix the ordem = 2. Starting from a straight line fit and adding one knot at a
time, find the least squares linear splineffi; », @; x) = Zipzlézi Ni2(x) with a number

of internal knots|, number of B-splinesp=1+2 and with a set of knots
012 =1{01 =02 <03 <...< 0142 < I3 = I1;4}, such that the ratio of the residual sums of
squares

RSS! +@)/RSS) = D" (3= f Guqzi X))/ D, (V)= F @125 X))’ = e

whereaeyi is a certain threshold level. This means thd 2, @; x) could not be signifi-
cantly improved ifg more knots are added> 1, and thereforé () », @; X) adequately
reproduces the "shape" of the unknown underlying functioffhe resulting linear LS
spline fit f (6, 2, @; X) is viewed as a control polygon with verticgs @), i =1, ..., p,
whereé = 6i,1, i =1, ...,p. The fit f (6, 2, @; X) is constructed following an algorithm
described in Kaishev et al. (2006).

Stage B.For each of the values af= 3, ...,nnax, find the optimal position of the knots
fi_(n-2n, as a solution of the constrained minimization problem

tIT—iQ || f (6|'2’ &’ X) - Cf(tl—(n—Z),nx&;X)” !
&iv1<tin<iin-1, (10)
i=1,..k

where ||g|| := max<x<p | g(X) | is the uniform .) norm of a functiong(x), and &,
i=1, ..,p are thex-coordinates of the vertices of the control polygod, ,, @; X)
obtained in stage A. In fact, minimization in (10) is over all polygﬁmaf(nfz)’m&;x)
which have vertice&;, &;), with x-coordinates which are the Greville site&t|_-2)n),
and y-coordinates, coincident with the-coordinatesy; of the vertices of the polygon
f (612, @; X).

Our purpose here will be to comment on the possibility of solving problem (10) and to
give some further insight into the optimality of the kndts,_2 , obtained as its solu-
tion. In order to do so, we first note that the two polygb@%,, @; X) andCry ., a0

have the same number of vertices=1+ 2, since the number of internal knots in
ti_n-2n is| — (n—2). Ideally, it will be desirable to find an optimal set of knbtg,_2)n

for which the minimum in (10) is zero, i.€; 5. = f (812, & X). In other words,
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one would require thdt_;_2n be such that(fj_n_2n, @; X) becomes the VDS approxi-
mation tof (6; 2, @; X), or equivalentlyf (8, », @; X) becomes the control polygon of the
spline functionf (f|_n_2)n, &; X). In this way the knot§_¢,_ n match best the geometri-
cal form off (6, 2, @; X) and as a consequence, the geometrical form of the data.

Since the two polygons in (10%¢ ¢, 4 andf (di2, @ x), have the samg-coordi-
natesa, they will coincide if theirx-coordinates coincide, i.e., i =¢&,i=1, ..., p.
The latter would be fulfilled if, for given Greville siteés = &, it would be possible to
solve the system (6) with respecttg,_2)n.

However, to findf_n_2n, SO that equations (6) are fulfiled with respect &o

I =1, ..., pis, in general, impossible. This is easily seen from the fact that (6) represents
an over-determined system of equations, with constraints on the knots, given by the
definition (2) ofti_n-2n. Sinceé; = a andép = b, the system (6) contaiisequations

and| —(n—2) ordered, unknown knotgn> 2). Thus, it is in general impossible to
place the knot$_y,_» , in such a way thaﬁf(f|_m_2>,n.&;x) = f (612, @; X, i.e.,& =&, for

any fixed set{&}, i=1, ...,p. Instead, what is achieved by solving (10) is that
Ct o pman J€tS as close t6(82, &; X) as possible, simultaneously wigh getting as
close to¢ as possible. Note that since we view ttieoordinates of the vertices of
f (612, @; X), &, as Greville sites of a higher order spline cung_-2n, @; X), the
constraintsi, 1 < tizn < &n-1, 1 =1, ...,k in (10), follow from (6).

Since the resulting curvig|_n_ n, &; X) is the variation diminishing (i.e. shape preserv-
ing) spline approximation of its control polyg@}(fl_(n_z)yn’&;x) (see Section 2), and since
the latter is the best uniformLy) approximation of f (82, @;x) in (10),
f(f-(n-2n, & X) Will closely follow the shape off (82, & x). The fact that
f(f_(n-2)n, &; X) is nearly a VDS approximation tb(d) », &; X) is proved in Section 4.
However, as has been noted in Kaishev et al. (2008),n-2n, @; X) is not a least
squares approximation to the data set. In order to preserve the st&he b n, &; X)

and at the same time to make it an LS fit to the data, its optimal ¥nqts,, are pre-
served, whereas its B-spline coefficieds are released, i.e., they are assumed to be
unknown parameters, which are estimated in the least squares sense, based on
{¥i, Xi}i1. Thus, for a fixech =3, ...,Nmax, the least squares fi(fi_n-2n, 0; x) which
solves

. N .
" 2 i Vi~ fti--21n, 6, X))’

is found. Finally, the orda® whose fitf(ﬂ_(n_z),n, 9; x) has the minimum residual sum
of squares is chosen.

In Section 4 we give results which shed some light on the optimality properties of the
knots, chosen according to (10). Since (10) is a non-linear optimization problem, a
method for its approximate solution, called the averaging knot location method has been
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proposed in Kaishev et al. (2006). It comprises a very important part of GeDS and its
properties are explored here in Section 4.1.

4. The optimal choice of the knotsf;_,_2) n, in stage B of GeDS.

The optimal choice of the knotg, n_2n, in (10) can be given the following interpreta-
tion. Consider then-th order parametric spline approximatidf[f] to the polygon
f (612, &; x) = X2, & Nio(t) of stage A, given as

VAF1 (1) = (VAT (1), VEFT (O} = (X216 Nin(®), 21 f (812, & &) Nin(D)}

= {Z21& Nin®), T2 & Nip(d} (11)
where the B-splines\ (), are defined ofj_y,_2n. The approximatiotv?[f] is con-
structed coordinate-wise by defining the B-splidgg(t) on the set of knot§_n o)
and taking thex- and y-coordinates,(&, @;), of the vertices off (6,2, @; X) as the
B-spline coefficients of the splindg[f](t) andV;’;l[f] (t). Hence, the control polygon,
Cva[f]' of the parametric spline approximatid?[f](t), coincides with the control
polygon,f (8 2, @; X), from stage A, i.e., following (8) we have

Cary = (EL1& Nia®), B &1 Nio0} = {t, Z21 @i Niah)} = f (81,2, & %),

where Y7, & Nio(t) = t, since the B-splinedl; »(t) are defined o)., whered; = &1,
Op+2 =ép andoiy1 =&, =1, ..., p and the linear precision property (5) applies. Note
thatV;’;‘[f] ) = Zipzl&i Nin(t) = f(f_n_2n @; 1) is the spline curve, whose control poly-
gonC is the best uniform approximation {@é, », @; x) (see stage B, Section
3).

f (fl—(n—Z),n:a';X)

Following (9) and (7), the VDS approximation éf4;, @; X) on fj_n_»n may be
expressed in a parametric form as

VIFI() = (VW FT 1), VIFT ) = {t, B2y (812, & &) Nin(D)}

= {(X21& Nin(®), S2y1 f (812, & &) Nin(h) (12)
As noted in stage B, Section 3, since the kiiats 2, are the solution of the minimiza-
tion problem (10)£* (-2 ) are as close as possible to theoordinates¢, of the
vertices of f (62, &; X). Hence, VA[f](t) = 22,& Nipt) in (11), is as close to the
straight line V[fl(t)=t= Zipzlfi* Nin(t) in (12), as possible. In other words,
V2[f](t) ~t and one can conclude that[f] (t) is nearly a functional spline approxima-
tion to f (82, @ X), i.e., VI[f] () = f(f-(n-2n, @; 1), is nearly a variation diminishing
(shape preserving) spline approximationft@, », @; x). This statement is made more
precise by Corollary 1.1 of Theorem 1, which gives a bound for the error

IR F1 (1) = VRIFT )l = It = 20 & Nial



11

V. Kaishev, D. Dimitrova, S. Haberman and R. Verrall

and by Corollary 1.2, which applied {d@é; », @; X) gives a bound for the error
IV L1 = VEFT O = 1521 f (81,2, & &) Nin®) — 221 f 612, & &) Nin(dll -

Theorem 1 establishes a bound fidf[g] — V2[g]|| in the general case whenis any
continuous functiorg € C[a, b], whereV [g] is the VDS approximation af, defined in
(9) andVv?3[g] is a non parametric (functional) version of (11), defined in (14).

Theorem 1. Let {&}2, be an ordered se=¢ <& <...<ép=b, and let ty,,
(p=n=2,k=p-n), be a set of knots, defined as in (2), with

ti+n:§i+1l | :1, ...,k, |fn:2

£l < tion<&int, =1, .ok, ifn>2. (13)

Then, for then-th order spline approximatiow?[g], defined ontx,, of a continuous
functiong € C[a, b], given by

Vgl (%) = 221 9&) Nin(®) | (14)
we have
IVIg] = Ve[l = (n - 2) w(g; MaXje1,..p-13 Ej+1 = &))) (15)

whereV|[g] is the Schoenberg's VDS approximation, definedigrfollowing (9) and
w(g; i=max{|gx)-gy | : Ix=yl =h xyela b]}
is the modulus of continuity of the functignath.

Corollary 1.1. Under the assumptions of Theorem 1 and i the straight ling, i.e.,
g=t, we have

Corollary 1.2. Under the assumptions of Theorem 1 and assuminggthata linear
spline function g(dp-2,2, @; t) = Zipzla'i Ni2(t) with vertices(&;, «;), wherea; e R and
(5p_2,2 is such tha61 = fl, 5p+2 = fp, 0it1 = fi, i = 1, ..., P, we have

IVIgl - Va[glll = 1Z21 96p-2.2 @; &) Nin(¥) — 221 9Bp-2.2, @; &) Nin(X)l|

< MaXe (1,...p-(n-2)) (M (j,...j+n-2)) {@g} — MiNgej,...j+n-2) {agh) - (17)
Remark 1. Note that in the case whe¥?[g] is a quadratic spline approximation to
9(0p-2.2 1), i.e., whem = 3, the bound (17) simplifies to

IVIgl - VA[glll = maXje1,..p-1y | @jer —j | . (18)
Remark 2.1t is worth mentioning that the spline approximation sch&fg], defined
in (14), belongs to the class of the so called "quasi-interpolants” which have some nice
approximation properties. For the latter, we refer to De Boor (2001).
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4.1. The averaging knot location method.

The minimization problem (10), in stage B, is a constrained non-linear optimization
problem with respect to the knots and although it is related to linear splines, it is still
computationally involved. In addition, as with any other non-linear optimization prob-
lem, finding the globally optimal solution is not guaranteed. The Kingtsy)n, which

are the optimal solution, may also be (almost) coalescent and this may cause edges and
corners in the final LS fit in stage B. In order to avoid these undesirable features, but to
preserve the optimality properties of the knots, as described in stage B and Section 4, we
propose to place the knots in stage B of GeDS according to (19), which we call the
averaging knot location method

Thus, the following method, giving an easy to evaluate, approximate solution to the
minimization problem (10), is implemented in stage B, so that the final GeD spline fit is
f(E--2.nms o: X), wheref|__2)n is given by (19).

The averaging knot location method:Given the control polygor (6, 2, @; X) of stage
A, for each of the values aof= 3, ...,nnax, Calculate the knot placemeint o with
internal knots, defined as the averages of #ieoordinates of the vertices of
f (612, @; %), i.e.,

Gion = Eirr + o+ &iin-1) /(N 1), i=1, ..,k (19)
Note thaté = 6i41, 1 =1, ...,k+2. The choice of the knots -2, according to (19)
makes it possible to significantly improve the bounds, which hold, fgr,, and are
given by Corollaries 1.1 and 1.2. The improved bounds for the set of kngts ,, are
established by Corollaries 2.1 and 2.2 of Theorem 2 given next.

Theorem 2. Let {fi}ip:l be an ordered sea=¢& <& <. <ép=Db, and letty,,
(p=n=2,k=p-n), be a set of knots, defined as in (2), with

ti+n:(§i+1+---+fi+n—l)/(n_1), I :1’ 1k

Then, for then-th order spline approximatiow?[g], defined ontx,, of a continuous
functiong € C[a, b], given by

Va[gl (x) = £ 9(E) Nin(x) (20)
we have
Vgl - V3[glll < [ =25 ] w(g; maxe 1,..p-1 Eer — 1) | (21)

where[v] :=min{ze Z :v < z}, V[qg] is the Schoenberg's VDS approximation, defined
on tx, andw(g; h) is the modulus of continuity of the functignath.

Corollary 2.1. Under the assumptions of Theorem 2 angl doincides with the straight
linet, i.e.,g=t, then
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IVt = VAL = [it= 221 & NIl < 22 maXie 1,..p-y) Ejer — £))- (22)

Corollary 2.2. Under the assumptions of Theorem 2, with 3, and assuming thatis
a linear spline functiong(dp-2.2, @;t) = Zip=1 a; Ni o(t) with vertices (¢, a;i), where
@i €R anddp_2z is such thady = &1, 6pi2 = &p, div1 =&, i =1, ..., p, we have

IVIg] = Va[glll = 1521 90p-2.2, @; &) Nis(X) — 221 90p-2.2, @; &) Niz(X)||

< 7 M@e(1,.p-1 | @js1—j | . (23)
In order to illustrate the bound (22) and how accurately the averaging knot location
method (19) solves system (6) with respect to the knots for given Greville sites, we have
randomly generated abscissa valdgsj = 1, ..., p for three fixed numbers of vertices
p, equal respectively to & = 3), 11 (k =8) and 23(k = 20). The number of simula-
tions for each value gp is 1000. The corresponding thousand graphs,bf & N; (1),
t € [0, 1], in the quadratic cage = 3), with knots defined by (19), are plotted in Fig. 2
(a), (b) and (c).

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
(b) k=8 (©) k=20

Fig. 2. Graphs of 1000 simulations of Zip:l & Njs(t), with tg 3 according to (25) and estimates of
€095 and &ggs for: (@) p=6 (k=3), €095=0.17, &gg5 =0.18; (b) p=11 (k=8), €(95=0.10,
éo_gs = 012, (C) p= 23 (k = 20), éo_gs = 005, éo_g5 =0.07.

In Fig. 2, two corridors are also shown. The first, defined by the dashed lines, is based
on the 95 sample percentile ef= ||t — 7 & N;s(t)||, denoted bye,4:. The second
corridor (the solid lines) is based on the 95 sample percéntjeof the bound in (22),
denoted by. As can be seen from Fig. 2, the maximum deviatiop bf & N; 3(t) from

the straight lind is reasonable, and rapidly decreases as the number of knots increases.
Thus, the higher the number of knots, the more accurately the averaging knot location
method (19) solves system (6). Similar conclusions are found to hold for the cubic case
(n=4), applying botte, o and&g o:. As seen from Fig. 2, the solid line deviates insig-
nificantly from the dashed line, so that the bound in (22) is nearly shamp=f8t

Remark 3. Note that, as seen from the bounds (16) and (22), the quality of the reconstruc-
tion of f (812, @; x), in stage B, using eithe@;; . orCig s, depends on

the maximal distance between the kn@its, obtained in stage A. By adding more knots

at appropriate sites, the maximal distance may be decreased, which will make the bound
(22) smaller. However, such an addition should be done in such a way that the geometry
of f (62, @; X) is preserved. To achieve this, one may apply the Boehm's knot insertion
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formula (see e.g., Farin 2002) and add a knot at the middle of the interval, where
ence with GeDS, the reconstruction in stage B is quite satisfactory and such knot inser-
tion has not been implemented.

Remark 4. The choice of the knofs_,-2» in (19) can also be given an interpretation,
related to the problem of optimal recovery of a functiprby interpolating it at some

fixed points, with am-th order spline on a set of kndls,. The problem is to find the
optimal set of knotsi;ﬁ";t for which the bound on the interpolation error is minimized
over all possible choices df,. Such optimal interpolation has been considered by
Michelli, Rivlin and Winograd (1976). An approximate solution to this optimal recovery
problem has been proposed by De Boor (2001). In our case, if we apply this scheme to
the polygonf (8,2, @; X) and view its verticesé, &) as given data points, then the
approximate solution of this optimal interpolation problem, as proposed by De Boor
(2001), is the set of knots (n-2)n in (19).

5. Asymptotic properties of GeDS and related inference.

Pointwise asymptotic properties of the proposed GeD spline estimation method have
been explored in Kaishev et al. (2006) where related large sample statistical inference
has also been provided. To investigate the pointwise asymptotic behaviour of the GeDS
estimation erroff (T2, o: x) - f(x) its decomposition

fA(fl—(n—Z),n, é; X) —f (X)
= [f(T—n-2n: 8 X) = E f(T-n-2,n, €5 X)| + [E f(T-n-2pns 85 X) = T(X)]

has been considered, where the first and the second terms on the right-hand side are
correspondingly referred to as the variance and the bias terms. In the asymptotic analy-
sis, carried out in Kaishev et al. (2006), as the sample Njzeggrows to infinity with

i =1, 2, ..., under some mild assumptions with respect to the sequences of design points
{x,—};.\‘;l, it has been shown that the kn@tsn-2)n, N = 2, obtained by the GeDS estima-

tion method, have global mesh ratios

() _ M%<js+1enr( jor =T j)

- r=n
(i Minn<j<ti+2en-r (i jor =t ) 7

which form a sequence, bounded in probability by a constan0, i.e., Mf(i” <v,
except on an event whose probability tends to zefg asc~ (see Lemmas 2 and 3 of
Kaishev et al. 2006).

Based on these results, and on a theorem from approximation theory establishing the
stability of theL,, norm of theL, projections onto the linear space of spliges, two
asymptotic properties of the GeDS estimator have been established. Thus, Theorems 1
and 2 from Kaishev et al. (2006) give a bound for the bias term and a sufficient condi-
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tion for it to be of negligible magnitude compared to the variance term. After its appropri-
ate standardizatiorﬁ(ﬂ_(n_z),n, 0; x) has been shown (see Theorem 3 of Kaishev et al.
2006) to converge to a standard normal distribution, given that a suitable vatug of

in the stopping rule of Stage A has been chosen. This characteristic of GeDS allows for
the construction of 10A — a) % asymptotic confidence intervals

f (-2 03 X) £ Z1_ay2 \/ var(f(fi-m-2n 6; X) | %), (24)
wherezy_,p =0 Y1-a/2),n=2 ,X = (X1, ..., Xn),

Var(f(f_n-z,n 8; X) | %) = 02 Ny {(F (), FOO) ™ Na(0) (1 + 0p(1)),

and the matrix-(X) = (Nh(X1), ..., Nn(Xn)). In the next section, numerical tests of the
proposed GeD spline estimator are performed and confidence intervals around the final
fits are constructed, using the above results.

6. GeDS in action.

The proposed GeDS method has been implemented Mgatigematica5.0 and a stan-
dard PC (Pentium IV, 1.4 Ghz, 512 RAM) has been used for all test examples.

In order to obtain a GeDS estimate, most often it is necessary to input only the set of
data{x;, yi}i’il. The two parameterag,i € (0, 1) andg € [0, 1], defined in steps 10 and

5 of stage A of GeDS (see Appendix A of Kaishev et al. 2006), by means of which the
exit from GeDS can be controlled, have default preassigned values, which in general
need not be re-set. The parameigy; is related to the stopping rule, which determines
when to exit from stage A, i.e., it determines the number and location of the &nots,

of f (612, @; X) and hence the number and location of the knots of the final higher order
LS spline fit f(ﬂ_(n_z),n, 9; x). The parameteg is related to the cluster weights of the
clusters of residuals of same signs, as defined in step 5 of stage A of GeDS (see Appen-
dix A of Kaishev et al. 2006). Its choice depends on the wiggliness of the recovered
function f and the level of the noige In the Normal case,~ N(0, o2), the noise level

is defined by the variance?. As will be illustrated, for most of the examples GeDS
gives very good results with the default values; = 0.9, 8=0.5. Our experience
shows that choices a@fe,it € (0, 0.7 may cause exit after the first few steps which, for
most functions, does not lead to an adequate resulting fit.

The choice of 8 depends on the level of the signal-to-noise ratio (SNR),
SNR= (var(f))%°/o. and on the degree of smoothnes$ ofAs will be seen, in most of

the numerical examples, the appropriate valug ofas 0.5, which means that the with-
in-cluster mean residual value and the cluster range can be considered equally important
components of the weights;, j=1, ...,I, (see Appendix A of Kaishev et al. 2006).
However, based on our experience, when the SNR is highf aisdsmooth, recom-
mended values arg € [0.5, 0.6, aext = 0.9. If the SNR is high and is a wiggly
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function then the recommended choice A% [0.5, 0.6, aexit € [0.99, 0.999, since
otherwise underfitting may result. In the case when SNR is lowfaislsmooth, one
may useB € [0.4, 0.3, aeit € [0.9, 0.99. It is known that, when the SNR is low and the
underlying function is very unsmooth, recoveririgis very difficult and different
choices of8 andaeyi may need to be attempted.

In order to facilitate comparison of GeDS with existing smoothing methods, we have
simulated data using the functions given in Table 1, which have been widely used in
testing other existing smoothing procedures.

Table 1. Summary of test functions.

Function Specification
1 f1 (X) = (4X = 2) + 2 ¢~ 16(4x-2"
2 f (X) = SIN(BX — 4) + 2 ¢~ 16(4x-2"
HeaviSing f3(X) = 4 sin(4 7 x) — sgn(x— 0.3) — sgn(0.72— x)
Doppler f,(X) = VX(1=X) sin(%%e—)), €=0.05

x-s; \—4
Bumps | fs(x) = ZJ_ hj(1+]5]) " th}=14,5,3,4,5,42,21,43,31,51, 4.2
{sj} =1{0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78}0.81

{w;} = {0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008,}0.005

Blocks f6(x):zjhj L) | {hy) = (4, -5, 3,4, 5,-4.2, 2.1, 43-3.1,2.1,-4.2

{sj}=10.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78,0.81

The data sets, used to test GeDS were simulated by addingeneis&0, o?), to each
of the six functions, as given in Table 2.

Table 2. Summary of examples used to test GeDS.

Example | Function | Interval | Sample | Data Noicelevel, | SNR
No (data) sizee N | x,i=1, ..,N | o

1 f1(x) [0, 1 256 Uu@,1J 0.6,04,0252,3,5

150 0.25 5

2 f (x) [0, 1 256 U@, 0.3 3

3 HeaviSine| [0, 1] 2048 |x =(i—-1)/2047 1 7

4 Doppler | [0, 1] 2048 | x =(i—1)/2047 1 7

5 Bumps | [0, 1] 2048 | x =(i—1)/2047 1 7

6 Blocks [0, 1 2048 | x =(i—1)/2047 1 7

As can be seen, we have included examples testing GeDS for different values of SNR,
and for various characteristics of the data set: small and large samplesiakges in a

grid or uniformly generated within different intervaise [a, b]. Note also that the test
functions possess different smoothness properties: some of them are relatively smooth,
while others are very wiggly.
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In order to compare the quality of the fits produced by GeDS to those given by other
authors, we use the mean square error (MSE), defined with respect to the true function
f, rather than to the data, i.e.,

MSE= (> (106 - 1(fi-zin %) ) /N.

Note that, in practice, the underlying function is unknown and a set of observations is
fitted. For this reason, we give also thg-error of approximation, defined afRSS .
However, for a fair comparison between the smoothing methods, one would need all
model parameter values, such as, the number of knots (regression functions) and degree
of the spline fits etc., which often are not reported in fallorder to compare the speed

of computation on equal grounds, one would need to implement all of the available
methods using the same hardware and software, and test them on entirely identical
simulated data sets. Such a comparison is outside the scope of this paper.

Stage A of the GeD spline estimator has been thoroughly illustrated in Kaishev et al.
(2006). Here we concentrate on the final GeD spline fit resulting from stage B.

We have run GeDS with 400 simulated data sets for Examples 1 and 2, and 31 data sets
for Examples 3-6 as has been done by other authors in testing their methods (see, for
example, Luo and Wahba, 1997). This allows us to compute the median of the MSE,
obtained using GeDS, and compare it with the MSE medians given by other authors.
However, in order to illustrate how GeDS performs, in each example we have used a
single data set randomly chosen among the simulated data sets.

We compare most of our results with those of Luo and Wahba (1997) since, along with
the median MSE values for their fits, they give also the order and the number of the
basis functions. The Bumps and Blocks have been excluded from the comparison, since
Luo and Wahba (1997) use versions of these functions which differ from ours, i.e., from
those proposed by Donoho and Johnstone (1994). The GeD fits in Examples 1 and 2 are
compared with the optimal spline fits, produced following the standard LS non-linear
optimization approach and its penalized version, developed by Lindstrom (1999). The
latter has been implemented, using the transformation of the knots, proposed by Jupp
(1974) and theMathematicafunction NM ni m ze, which attempts to find the global
minimum. Due to the drawbacks of the non-linear optimization approach, it has not been
feasible to produce optimal spline fits for the spatially inhomogeneous functions, recov-
ered in Examples 3-6 from large data sets, uSlathematicaand a standard PC.

Example 1. This smooth function first appears as a test example in Fan and Gijbels

(1995). It has been used later by Luo and Wahba (1997), Denison et al. (1998) and Zhou
and Shen (2001) to test their fitting procedures. With this example, we illustrate that

GeDS works well for data sets with different sample sizes and various noise levels,

assuminge is normally distributed. It takes between 0.89 sec and 1.66 sec to compute

the GeDS fits, given in Table 3.



Geometrically designed, variable knot regression splines: Variation diminishing optimality of knots 18

Table 3. (Example 1) Summary of fits produced by GeDS.

Fit| Graph N | o [n]k Internal knots exit, B | Lo —error, MSE
No

1 |Fig.3,(® | 150| 0.25| 3| 4 {0.37,0.46,0.54,0.62 | 0.9,0.5| 2.87,0.001282
2 |Fig.3,(b) [256| 0.25| 3| 4 {0.38,0.46,0.54,0.63 | 0.9,0.5| 4.01, 0.001359
3 |[Fig.3,(c) | 256| 0.4 3| 4 {0.38, 0.46,0.54,0.60 |0.95,0.5 6.17,0.006573
4 | Fig.3,(d)| 256| 0.6| 3| 5|{0.26, 0.39, 0.51, 0.55, 0.620.95, 0.5 9.03, 0.021914

The Ly-errors of all the fits are within the noise level and their visual quality is very
good, as can be seen from Fig. 3. The 95% confidence intervals given in Fig. 3 have
been calculated using (24) with the corresponding known (‘oragle’)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

© (d)

Fig. 3. (Example 1) Graphs of the final quadratic B-spline fits and confidence intervals, produced
by GeDS: (a) N =150, 0 =0.25; (b) N =256, 0 = 0.25; (c) N =256, 0 =0.4; (d) N =256, 0 =0.6;
The dotted function is the true function.

Note that the first two fits in Table 3 are obtained witk: = 0.9 andB = 0.5. Since the
noise levels for fits No 3 and 4 are higher than for fits No 1 and.&, has been
increased to 0.95, because, in the case of a smooth function and a high noise level, the

relative improvements in RSS from one step to another would be smaller and more steps
would be needed to recover the function.

In the caser. = 0.4, we have compared the quadratic GeD spline fit (No 3, Table 3)
with the optimal quadratic spline fits obtained applying the LS non-linear optimization
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method (NOM) and its penalized version (PNOM), due to Lindstrom (1999). The results
are summarized in Table 4. As can be seen, the three fits are very close, comparing the
L,-errors and the location of the knots. However, the GeD fit recovers the original
function significantly better than the fits NOM and PNOM, as indicated by the corre-
sponding MSE values. The NOM optimal fit produces an edge at 0.425 and visually
deviates stronger from the shape of the underlying function, which is one of the draw-
backs noted by Lindstrom (1999). The computation time needed for GeDS is less then a
second, and for PNOM and NOM it is respectively 11 and 20 minutes, usiiMpthe-
maticafunctionNM ni m ze.

Table 4. (Example 1) The fits produced by GeDS, PNOM and NOM.

Fit | Method | n | k Internal knots L, —error, MSE
No
1 | GeDS | 3| 4/ {0.38, 0.46, 0.53, 0.60 6.17, 0.006573

2 | PNOM | 3| 4]{0.40, 0.44, 0.52, 0.2 6.16, 0.007364
3 | NOM [3]4]{0.42,0.43, 0.53, 0.4Q9 6.14, 0.010285

A frequency plot of the number of internal knots and box plots for the three linear GeD
spline fits for data sets withN =150, o.=0.25, N =256, o0.=0.25 and
N = 256,00 = 0.4, over the 400 GeDS runs are presented in Fig. 4 (a) and (b).

350
0.02 |
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250 0.015 ¢
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0.01 r
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100
0.005 r

50

3 4 5 6 7 N=150, 0,=0.25  N=256,0,=0.25  N=256, 0".=0.4
(@ (b)

Fig. 4. (a): A frequency plot of the number of knots of the 400 linear GeD spline fits; (b): Box plots
of the MSE values of the 400 linear GeD spline fits;

As can be seen from Fig. 4 (a), the number of knots of the GeD fits for higher noise
level (< = 0.4) is more dispersed over the range of values 3 to 7, than for the case of
lower noise levelo. = 0.25 as is natural to expect. On the other hand, as can be seen
from the box plots in Fig 4 (b), GeDS performs best in the case of larger sample size
and lower noise levelN = 256,0, = 0.25). The median MSE value of the 400 linear
fits, for oo = 0.4, with median number of internal knds= 5, is 0.009. This is lower

than the MSE value 0.012 of Luo and Wahba (1997), and is equal to that of Zhou and
Shen (2001), both obtained using cubic splines with a higher number of regression
functions (e.g., 13 for the fit of Luo and Wahba, 1997).
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Example 2. The functionf, (see Table 1) appears as a test example in Fan and Gijbels

(1995), Luo and Wahba (1997), Denison et al. (1998) and Zhou and Shen (2001). Using
the GeDS algorithm we have produced linear, quadratic and cubic fits which are illus-

trated in Fig. 5 and whose details are given in Table 5.

Peyjt=0.95 — —————————— — —
eyt =0.

|
|
d
|
|

0.8
.

0.6

0.4

0.2

RSS/ N
R U |
@

0 1 2 3 4 5 6
0 0.2 0.4 0.6 0.8 1 Number of knots

(@) (b

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

© (d)

Fig. 5. (Example 2) Graphs of the final spline fits and confidence intervals, produced by GeDS: (a)
linear; (c) quadratic; (d) cubic; (b) the values of the @-ratio - black dots and the values of RSS/N -
grey dots, at each iteration in stage A; The dotted function in (a), (c), (d) is the true function.

Table 5. (Example 2) Summary of fits produced by GeDS.

Fit| Graph |n|k Internal knots Qexit, B | Lo —error, MSE
No

1 |Fig.5,(@ |2|6]{0.30, 0.40, 0.50, 0.60, 0.63, 0)830.9, 0.5| 4.60, 0.009931
2 |Fig.5,(0)|3|5 {0.35, 0.45, 0.55, 0.61, 0.¥3 | 0.9,0.5| 4.63, 0.005961
3 - 414 {0.40, 0.50, 0.57, 0.9 0.9,0.5| 4.99, 0.019523
4 - 316({0.33,0.37, 0.45, 0.55, 0.61, 0)73.95, 0.5/ 4.53, 0.006153
5 |Fig.5,(d)| 4|5 {0.35, 0.42, 0.50, 0.57, 0.69 |0.95, 0.5/ 4.51, 0.004258

The SNR of the sample data is 3, as for fit No 3 of Example 1. $jnisealso relatively
smooth we have used; = 0.95 andB = 0.5 in order to obtain the cubic fit in Fig. 5

(d), which has very good visual quality and low MSE value. The GeD spline fits No 1-3
of Table 5, with number of regression functidns n = 8, are obtained with the default
valuesaei = 0.9 andB = 0.5. The cubic fit, No 3, with four knots, underfits the data
while, as seen from Fig. 5 (a) and (c), the linear and quadratic fits are sufficiently accu-
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rate. Adding one more knot by running GeDS with the higher value.gf= 0.95
improves the cubic fit as illustrated by Fig. 5 (d). The 95% confidence intervals given in
Fig 5 have been calculated using (24) with the known (‘oracleThe behavior of the
stopping rule of stage A, is illustrated in Fig. 5 (b). It can be seen thatwitlx 0.9

the algorithm exits with 6 internal knots for the linear fit and the RSS is 21.17. This
means that the RSS of the linear fit with 8 knots is at least 90% of the value 21.17, i.e.,
the residual sum of squares has stabilized for three consecutive steps at which models
with 6, 7 and 8 knots have been computedrlfi = 0.95 the algorithm exits one step

later, with 7 internal knots for the linear fit and RS30.38 since the improvement in

RSS for the next two consecutive steps is less than 5% of 20.38. So, we see that the
stopping rule, based on the idea of exiting upon reaching a certain level of stabilization
in RSS, tends to select models with the appropriate number of knots.

The median MSE value for the 400 linear and quadratic fits are equal to 0.0075 and
0.0095 respectively, and are comparable with those produced by other authors. For
example, Luo and Wahba (1997) report MSE.007 and number of basis functions
equal to 13 for their HAS models. For all 400 linear fits the number of internal knots
used by GeDS is between 5 and 7. It takes 1.58 seconds to compute fits No 1-3 and 1.88
seconds to compute fits No 4 and 5 of Table 5.

Based on the_,-errors, given in Table 5, it can be seen that the best GeDS fit for this
particular function is the cubic one, No 5 in Table 5. We have compared it with the
optimal cubic spline fits PNOM and NOM with the same number of knots. The results
are summarized in Table 6. As in Examples 1, the GeD fit is significantly better in terms
of MSE and visual quality. The location of the knots is similar for GeDS and PNOM (fit
No 2), both avoiding replicate knots. However, the optimal fit NOM (fit No 3) has 3
replicate knots at 0.5 and hence, produces an edge and visually deviates more strongly
from the shape of the underlying function. The computation time needed, for GeDS is
less then two seconds and for PNOM and NOM it is, respectively, 1.1 hour and 1.9 hour,
using theMathematicafunctionNM ni m ze.

Table 6. (Example 2) The fits produced by GeDS, PNOM and NOM.

Fit | Method | n | k Internal knots L, —eror, MSE
No
1 | GeDS | 3| 5 {0.35,0.42, 0.50, 0.57, 0.9 4.51, 0.004258

2 | PNOM | 3| 5({0.33, 0.44, 0.50, 0.55, 0.Y6 4.47, 0.005216
3 | NOM [3]5]{0.32,0.50, 0.50, 0.50, 0.Y8 4.43, 0.006598

Example 3. The HeaviSine function is one of the four functions introduced by Donoho
and Johnstone (1994) and widely used as test examples by other authors, see for exam-
ple Fan and Gijbels (1995), Luo and Wahba (1997), Denison et al. (1998), Zhou and
Shen (2001), Lee (2000), Pittman (2002). It is a smooth function with two discontinui-
ties atx=0.3 andx=0.72. It takes 55 seconds to obtain simultaneously the linear,
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guadratic and cubic GeD spline fits, given in Table 7. In this and the following examples
of spatially inhomogeneous curves, we have set the valuegfprat 0.99, to prevent
GeDS from producing a spline approximation which is too smooth for adequately repre-
senting the 'shape’ of the data.

Table 7. (Example 3) Summary of fits produced by GeDS.

Fit | Graph | n | k Internal knots Qexit, B | Lo —error

No MSE

1 - 2(18/({0.10, 0.13, 0.18, 0.29, 0.30, 0.30, 0.32, 0.38, 0.44.99, 0.5 46.56
0.57, 0.63, 0.71, 0.71, 0.72, 0.74, 0.83, 0.84, P{99 0.2203

2 | Fig.6 | 3| 17| {0.11, 0.16, 0.23, 0.29, 0.30, 0.31, 0.35, 0.41, 0.50,99, 0.5 43.42
0.60, 0.67, 0.71, 0.72, 0.73, 0.79, 0.84, 0.92 0.0482

3 - 41 16| {0.14, 0.20, 0.26, 0.30, 0.31, 0.33, 0.38, 0.46, 0.58,99, 0.5 44.82
0.64, 0.69, 0.72, 0.73, 0.77, 0.81, 0.89 0.0942

For the quadratic GeDS fit (No 2 in Table 7), illustrated in Fig. 6, the median number of
regression functionk + n is only 20 while the median MSE value 0.057, is comparable
with 0.04 given by Luo and Wahba (1997) for their cubic spline model 5@tlasis
functions. Our GeDS algorithm uses between 17 and 21 internal knots to fit the 31
simulated data sets in the linear case. Based ol teerors for the linear, quadratic and
cubic fits given in Table 7, the best GeDS fit for this particular function is of degree 2.

-10

-15

0 0.2 0.4 0.6 0.8 1

Fig. 6. (Example 3) Graph of the quadratic GeD spline fit. The dotted function is the true function.

Example 4. This function is known as the Doppler function. It is highly oscillating,
especially near the origin, where most of the procedures fail to recover it. Using the
GeDS algorithm we have obtained six different fits for the same data set with SNR equal
to 7. Fits No 1-3, given in Table 8, are calculated simultaneously in 304 seconds with
aexit = 0.99. The quadratic one (No 2) has 46 knots and M8H3. For comparison,

the HAS cubic fit, produced by Luo and Wahba (1997) has M8HO with 120 basis
functions. Based on the quadratic GeD spline fits, obtained for 31 simulated data sets,
the median MSE value is 0.089 and median number of knots is 62,a4sirg0.999.

The number of knots for the 31 quadratic fits is between 50 and 78.
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Fig. 7. (Example 4) Graph of the quadratic GeD spline fit. The dotted function is the true function.

Comparing thd_,-errors of the fits of degree 1, 2 and 3, summarized in Table 8 the best
fit for the Doppler function is the quadratic one. The GeDS fit No 5, given in Fig. 7, is
seen to fit very well the Doppler function near the origin, avoiding oversmoothing.

Table 8. (Example 4) Summary of fits produced by GeDS.

Fit

Graph

exit, B

L, —error, MSE

47

0.99, 0.5

48.24, 0.19980

46

0.99, 0.5

46.77, 0.12532

45

0.99, 0.5

74

0.999, 0.5

2
8
49.04, 0.233945
3

45.21, 0.11463

Fig.

73

0.999, 0.%

44.92, 0.060037

O O B[ W] N -

INEFRIENIENEAMEN

72

0.999, 0.5

46.10, 0.10681

Example 5. The Bumps function is very wiggly and also difficult to fit. Following the
prescription for choosingeyit in the case of fitting wiggly functions with high SNR, we

have setre,i = 0.99 and have obtained the GeDS fits whose details are summarized in
Table 9.

Table 9. (Example 5) Summary of fits produced by GeDS.

Fit

Graph

Qexity ﬂ

L, —error, MSE

83

0.99, 0.5

48.59, 0.28363

1

82

0.99, 0.5

56.03, 0.631448

81

0.99,0.5

66.44, 1.19839

0

103

0.999, 0.

44.51, 0.140580

102

0.999, 0.9

47.96, 0.26466

4

O O | W| N -

INFIENYENETIEN

101

0.999, 0.9

3

52.29, 0.4454(

Looking at thelL,-errors we see that the fit with the lowésterror is the linear one,
which is illustrated in Fig. 8. A linear fit for Bumps is given also by Lee (2000) whose
MDL procedure automatically chooses the order of the fit within the range 1 to 4. Based
on 31 simulated data sets the median MSE value for the linear fit is 0.22, for the qua-
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dratic fit it is 0.51 and the median number of knots is 90. The GeDS estimator places
between 79 and 102 knots for these 31 fits. For comparison, the median MSE value
reported by Pittman (2002) for the cubic AGS fit is 0.4001, for a certain median number
of knots, which is not reported.

As fits No 1-6 in Table 9 indicate, by increasing thg; parameter it is possible to
improve the quality of the final fit, allowing GeDS to add more knots where necessary.
Fits No 1-3 are obtained simultaneously in 795 seconds, whereas fits No 4-6 are com-
puted in 1255 seconds.

50

40

30

20

10

0 0.2 0.4 0.6 0.8 1

Fig. 8. (Example 5) Graph of the linear GeD spline fit. The dotted function is the true function.

Example 6. For the Blocks function, in order to obtain fits No 1-4 given in Table 10, we
have run GeDS withweyit = 0.99 andaey = 0.999. The details of the linear and qua-
dratic fits for both values afeyi:, are presented in Table 10. The best fit, produced by
GeDS is linear, No 3, and it is illustrated in Fig 9.

0 0.2 0.4 0.6 0.8 1

Fig. 9. (Example 6) Graph of the linear GeD spline fit. The dotted function is the true function.

Fits No 1-2 are obtained in 344 seconds and No 3-4 in 856 seconds. Our median MSE
value, based on 31 runs with,; = 0.999 is 0.12 with 83 median number of knots. For
comparison, the median MSE value given by Zhou and Shen (2001) is 0.08, who do not
report the number of knots of their SARS fit.
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Table 10. (Example 6) Summary of fits produced by GeDS.

Fit|Graph |n| K | a@exit, 8 | Lo —error, MSE

[}

53| 0.99, 0.5| 55.63, 0.64290
52| 0.99, 0.5 59.80, 0.86098
85| 0.999, 0.5 42.43, 0.082962
84| 0.999,0.9 43.68, 0.126953

©

Fig.9

Al w| N -
|
Wl wW N

7. Discussion and conclusions.

Based on the results of Section 4, we can conclude that the knots of GeDS, placed accord-
ing to the knot averaging method, approximate very well the optimal variation diminish-
ing knots of stage B (see Section 3). Thus, based on its variation diminishing (shape
preserving) character, the GeD spline estimator has been shown in Section 6 to be suc-
cessful in fitting both smooth and spatially inhomogeneous functions. Its large sample
statistical properties, such as asymptotic normality, established in Kaishev et al. (2006)
facilitates the construction of asymptotic confidence intervals with respect to the
unknown functionf , illustrated in Examples 1 and 2 of Section 6.

Based on the results presented in the present paper and also in Kaishev et al. (2006) we
can conclude that the GeDS method is a fast, stable, automatic statistically viable estima-
tion procedure with an appropriate geometric interpretation which allows to follow the
entire fitting process. The existence of the two parametggsand8 combines automa-

tion with some flexibility in tuning GeDS to cope with the particular noise level, and
smoothness characteristics of the underlying function. The numerical results of Section 6
show that the GeD spline regression models are comparable with those obtained with
other methods, including the penalized non-linear optimization method of Lindstrom
(2999). In particular, in Examples 1 and 2, GeDS managed to find knot placements
which are nearly optimal but avoiding replicate knots, as seen from Tables 4 and 6.
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Appendix

Proof of Theorem 1Note that, fom=2,&=¢&,i=1, ...,p, hencevV?g] =V [g] and
the bound in (22), which is zero, is sharp. Ror 2, from (6) it follows that] =a=¢&;
and¢; =b=¢p, and from the definitions of[g] andV?[g], (9) and (14) respectively,
we have
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IVIg] - V3[glll = MaXeap | X1 (9E) — 9E)) Nint) |
< MaXejab) Dier | (OE) — 9ED) | Nin(h)

= MaXe2,..p-1 | 9EF) —9E) I, (25)
where the last equality follows from the partition of unity property of B-splines (See
Section 2). Applying the definition of the modulus of continuity to (25) we have

IVIg] - Ve[glll < maXie2,..p-1 | 9ET) — 9(E)) | (26)

< w(g; MaXe2,..p-1y | &5 —&j 1. (27)
From (13), it follows that_n-2 < tj+1 andtjin1 <&jin-2, j =2, ...,p— 1. From the
definition (6) of the Greville siteg” we havetj,; <&} <tjyn-1, j =2, ...,p—1, where
we defineé, | :=a andép :=b, 1 =1, 2, ..., to avoid difficulties in notation. Hence,
Ej-n-2) <& <&jsn-2, 1=2, ...,p—1. Applying the latter inequalities and assuming
that the maximum in (27) is achieved for some ™, in the cas€jn > &jm, we have

.....

< w(g; (N=2) MaXe1,..p-1) )41 — &))). (30)
Using the fact thad(g; h) is a monotone function ih and that it is also subadditive in
h, i.e.,w(g; h+w) < w(g; h) + w(g; w), from (30) we finally obtain

This completes the proof of Theorenu 1.

Proof of Corollary 1.1.This follows directly from (15) and from the definition of
w(g; h), i.e.,
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= MaXic (2,...p-1) | ZiJ:j(Efnzzz) @i Ni &) - aj | (31)
since, as shown in the course of the proof of Theorenfjl, ) <& <¢jin-2),
=2, ...,p-1.Inthe last equality we have defingd, := a andép, :=b,1=1, 2, ....
Sinceg is a linear spline, we know thatdf <& <&, J-(N-2)<gq<j+(n-2)
then Zij:j(f[nzlz) @i Ni 2(§7) = aq Ng2(§]) + aqe1 Ngs1,2(£}), which is a convex combination
of only two B-spline coefficients. Assuming that the maximum in (31) is achieved for
somej = j™, in the case whefjm < &, < &jm < &g1, M =g < M+ (n-2) we have

maXe (2,..p-1 | Zijij(ffnzzz) @i Nio@é) —aj|= | papiane? N 2(&5m) — ajm |

< (Ma@¥e (jm...j"+n-2) {@q} — MiNge( jm_jmi(n-2) {aq)) (32)
and iféq < &m < &qua < &jm, JT-(N-2) =g < ™ we have

maXe (2,..p-1 | Zij:j(ffnz_)z) ai Nio@é) —aj| = | Ziq=+q1 @i Nio(&m) — ajm |

< (M&¥%e (jm(n-2),...jm (@q} = MiNge(jmn-2),..jm {aq)) - (33)

It is not difficult to see that both differences on the right-hand sides of the inequalities in
(32) and (33) are bounded by

MaXe (1,...p-(n-2)) (Mge (j,...j+(n-2) (&g} — MiNge(j _..j+n-2) {aq})
Hence, from (31), we obtain

IIVIg] — Va[glll =
MaXe1,... p-(n-2)) (MA%e j,...j+n-2) (g} — MiNgej,...j+n-2) 1aqg))

somej™, n=< j™< p-n. We can expres§n in terms of¢jm, using the definitions (6)
and (19). After some algebra it is not difficult to see that

| &jm — &fm |

= (n_ll)Z | Zlnz_]_2 i (f] Mt (n—1-i) + é:] m—(n—l—i)) — (n — 1) (n — 2) é:] m | (34)

and if we now rearrange the terms in the sum in (34), we obtain

| §jm —&im [ = ﬁ | ST (E ety — €5m) — Em = Ejm_m-1-))) | . (35)

Assume thaty o2 i (€jmyn_1-i) — &jm) > DI i(E)m — €jm_n-1-i)). In this case, it is not
difficult to see that (35) is bounded by

s 1 -2
|[éin =& | = P ST Eranosi — €5m)
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1 (N=2)(n=1) (. )

= (n—l)2 2 (‘f] My(n-2) — f] m)
(n-2) . .

= 21 (€jmin-2) — &jm)

= gzgg)l) MaXje(1,...p-1 (§j+1 — &j) - (36)

Similarly, it can be shown that F"2i (¢€jmyn-1-i) — €jm) < D2 i(€jm — Ejm_n-1-i)) the
bound in (36) also holds. Thuspm (36) and (27) we have

VLGl - V2[glll < (g; T2 maXie 1...p-1) Ejor — &) (37)
Using the monotonicity and subadditivity ©fg; h) in h, from (37) we finally obtain

Vgl - Vgl = [ 822 w(g; maxic 1,..p-1) Ejra — £))

where [v]:=min{ze Z :v < z}. Applying similar reasoning, one can show that the
bound (21) holds also in the case whea P"<n or p—n< j™< p-1. This com-
pletes the proof of Theorem=2.

Proof of Corollary 2.1.This follows directly from (37) and from the definition of
w(g; h), i.e.,

IVt = VALt = it = S22 & NiaOIl < D225 maxic a,..p-1) €1~ £))

Proof of Corollary 2.2From (31) we have

IVIgl - V3[glll < maXc ...p1) | T2 1 @i Nia€) — | - (38)
We need to consider the cases whgm <¢&j <¢j, 2<j=<p and & <§j <&j.a,

1< j=p-1.Inthe first case, applying the Mansfield-De Boor-Cox recurrence formula
(4) to express; »(£7) in the maximum in (38) we have

§i—¢] I N e
R o |

= 4 MaXc 2, p | (@1 —a))], (39)
where we have expresseq in terms of¢;, using (6) and the definition of,,,
i=1, ...,k in Theorem 2, and have used the fact hat&;_; > £j.1 — & to arrive at
the last inequality. Similarly, it is not difficult to see that the same bound as in (39) holds
in the case whegy < £ < £j,1. This completes the proof of Corollary 2:2.
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