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Summary
A  new  method  for  Computer  Aided  Geometric  Design  of  least  squares  (LS)  splines  with  variable  knots,

named  GeDS,  is  presented.  It  is  based  on  the  property  that  the  spline  regression  function,  viewed  as  a

parametric curve, has a control polygon and, due to the shape preserving and convex hull properties, closely

follows  the  shape  of  this  control  polygon.  The  latter  has  vertices,  whose  x-coordinates  are  certain  knot

averages, known as the Greville sites and whose y-coordinates are the regression coefficients. Thus, manipu-

lation of the position of the control polygon and hence of the spline curve may be interpreted as estimation

of its knots and coefficients. These geometric ideas are implemented in the two stages of the GeDS estima-

tion method. In stage A, a linear LS spline fit to the data is constructed, and viewed as the initial position of

the control polygon of a higher order (n > 2) smooth spline curve. In stage B, the optimal set of knots of this

higher order spline curve is found, so that its control polygon is as close to the initial polygon of stage A as

possible and finally,  the LS estimates of  the regression coefficients of  this curve are found.  To implement

stage A, an automatic adaptive knot location scheme for generating linear spline fits is developed. At each

step of stage A, a knot is placed where a certain bias dominated measure is maximal. This stage is equipped

with a novel  stopping rule which serves as a model selector.  The optimal knots  defined in stage B ensure

that the higher order spline curve is nearly a variation diminishing (i.e., shape preserving) spline approxima-

tion to the linear fit of stage A. Error bounds for this approximation are derived in Kaishev et al. (2006). The

GeDS method produces simultaneously linear, quadratic,  cubic (and possibly higher order)  spline fits with

one and the same number of B-spline regression functions. 

Large sample properties of the GeDS estimator are also explored,  and asymptotic normality is established.

Asymptotic conditions on the rate of growth of the knots with the increase of the sample size, which ensure

that the bias is of negligible magnitude compared to the variance of the GeD estimator, are given. Based on

these  results,  pointwise  asymptotic  confidence  intervals  with  GeDS  are  also  constructed  and  shown  to

converge to the nominal coverage probability level for a reasonable number of knots and sample sizes. 

Keywords:  spline  regression,  B-splines,  Greville  abscissae,  variable  knot  splines,  control  polygon,  asymp-

totic confidence interval, coverage probability, asymptotic normality
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1. Introduction. 

Consider a response variable y  and an independent variable x,  taking values within an
interval @a, bD and assume there is a relationship between x and y of the form

(1)y = f HxL + e,

where f H ÿ L  is an unknown function and e  is a random error variable with zero mean and
variance  E e2 = s2 > 0.  We  will  consider  the  regression  problem  of  estimating  f H ÿ L,
based  on  a  sample  of  observations  8xi, yi<i=1

N .  The  design  points  8xi<i=1
N  may  be  either

deterministic or random.

Different  methods  for  the  solution  of  this  regression  problem have  been  proposed  and
the  related  literature  is  extensive.  One  popular  approach  is  to  approximate  f  with  an
n-th order (degree n - 1) spline function defined on @a, bD. As is well known, n-th order
splines, on a set of k  internal knots, form a linear functional space, an element of which
is  represented  as  a  linear  combination  of  appropriate  spline  basis  functions.  Thus,  a
spline  function  is  defined  by  its  order  n,  by  the  number  and  location  of  its  k  internal
knots and by the coefficients in front of the basis functions.

It  is also well known that least squares fitting with splines of a fixed degree is a linear
optimization  problem,  if  the  number  of  knots  and  their  location  are  fixed.  However,
since  the  latter  are  in  general  unknown  and  need  to  be  defined,  several  approaches  to
constructing free-knot regression splines have been developed. The direct approach is to
assume that n and k  are fixed (but unknown), and to find the knot locations which mini-
mize  the  (non-linear)  least  squares  criterion  (see  e.g.  Jupp,  1978)  or  an  appropriately
penalized  version  of  it  (see  Lindstrom,  1999).  For  an  extensive  discussion  of  the
(dis)advantages of non-linear free-knot spline estimation, we refer to Lindstrom (1999). 

In order to circumvent the difficulties related to the non-linear optimization approach, a
number of authors have developed adaptive knot selection procedures, such as step-wise
knot inclusion/deletion strategies. Among the latter are the early work of Smith (1982),
the TURBO spline modelling technique of Friedman and Silverman (1989), the MARS
method proposed by Friedman (1991),  the POLYMARS of  Stone et  al.  (1997) and the
spatially  adaptive regression splines (SARS) of  Zhou and Shen (2001). Other methods,
such  as  the  knot  removal  algorithm  of  Lytch  and  Mørken  (1993)  and  the  minimum
description length (MDL) regression splines of Lee (2000), have been proposed as well.
Multivariate  spline  regression  and  knot  location  has  also  been  considered  by  Kaishev
(1984). Further references to alternative spline fitting methods, such as smoothing spline
techniques are to be found in Kaishev et al. (2006).

Asymptotic  properties  of   least  squares  spline  regression  estimators  have  been  consid-
ered by Agarwal  and Studden (1980),  Zhou et  al.  (1998),  and more recently  by Huang
(2003)  and  by  Wang and  Yang  (2006).  Assuming f œ Cq@0, 1D,  Agarwal  and  Studden
(1980)  give  expressions  in  terms  of  the  derivative  f HqLHxL,  for  the  design  density,  the
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knot  placement  density  and  the  number  of  knots  which  minimize  the  asymptotic  inte-
grated  mean  square  error.  More  recently,  Zhou  et  al.  (1998)  and  Huang  (2003),  have
studied local (pointwise) asymptotic properties of least squares regression splines. Under
the  assumption  of  asymptotic  uniformity  of  the  knot  placement,  Zhou  et  al.  (1998)
provide explicit expressions for the asymptotic pointwise bias and variance of regression
splines.  A  less  stringent  assumption  on  the  knot  mesh  has  been  considered  by  Huang
(2003),  who  establishes  some  asymptotic  results  for  general  estimation  spaces.  These
asymptotic results shed some light on the large sample properties of least squares splines
under some conditions on the joint asymptotic behaviour of the number and position of
the knots and the sample size.  

In this paper, we present a new variable knot spline regression estimation method which
is very different  from the existing methods and includes two stages. In stage A, a least
squares  linear  spline  regression  fit  to  the  data  is  constructed,  following  a  novel  knot
location  method.  The  latter  places  knots  sequentially,  one  at  a  time,  at  sites  where  a
certain  bias  dominated  measure  is  maximal.  Stage  A  is  equipped  with  an  appropriate
stopping rule which serves as a model selector  (see Section 3, and Appendix A for the
complete  description  of  stage  A).  In  stage  B,  an  optimal  set  of  knots  of  a  smoother,
higher  order  Hn > 2L  least  squares  spline  approximation  is  found  so  that  the  latter  has
also the characteristics of a Schoenberg's variation diminishing spline approximation of
the  linear  spline  fit  from stage  A.  We show that  this  new spline  regression  estimation
method has a direct Geometric Design interpretation. It stems from the fact that Schoen-
berg's  variation  diminishing  spline  approximation  scheme  is  the  fundamental  concept
underlying parametric B-spline curve and surface modelling in Computer Aided Geomet-
ric Design (see e.g. Farin, 2002). For this reason we will call our new method the GeD
spline estimation method and will refer to the related estimator as a GeD spline estima-
tor or simply GeDS. Optimality properties of the knots of the GeD spline estimator are
established in Kaishev et al.  (2006) where further algorithmic details,  related to GeDS,
are also to be found.  The numerical performance of GeDS, compared to other existing
spline  estimators  is  addressed more thoroughly  in  Kaishev et  al.  (2006).  In  the present
paper,  the  focus  of  our  attention  is  on introducing this  new spline estimator  and on its
statistical properties. Under some mild conditions on the design points 8xi<i=1

N , we estab-
lish its asymptotic normality and give conditions under which the bias term of the approx-
imation  error  becomes  asymptotically  negligible  compared  to  the  variance  term.  The
construction  of  pointwise  asymptotic  confidence  intervals  is  also  considered  and  illus-
trated numerically.

The  paper  is  organized  as  follows.  In  Section  2,  it  is  shown that  the  spline  regression
function  can  be  interpreted  as  a  special  case  of  a  parametric  spline  curve,  with  a
(control) polygon closely related to it. This geometric relationship is based on the estab-
lished  convex  hull  and  variation  diminishing  properties  of  the  spline  regression  curve.
Since  the  vertices  of  its  control  polygon  are  defined  in  terms  of  its  regression  coeffi-
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cients and knots, it is proposed that their estimation is performed through positioning the
control  polygon  of  the  spline  regression  curve  so  that  it  follows  the  noise-perturbed
shape  of  the  underlying  function.  This  geometric  characterization  of  the  regression
problem is  used  in  Section  3  to  develop  the  GeD spline  regression  estimation  method
and  in  particular,  to  formulate  its  two  stages,  A  and  B,  as  optimization  problems.  In
Section 4, some pointwise asymptotic properties of the GeDS estimator are established.
The GeDS method and its properties are illustrated numerically in Section 5, based on a
simulated example. It is shown how the large sample results of Section 4 can be used to
construct  asymptotic  pointwise confidence  intervals  with  a required coverage probabil-
ity.  In  Section  6  we  provide  some discussion  and  conclusions.  Detailed  description  of
part A of GeDS are given in Appendix A and proofs of the results of Section 4 are given
in Appendix B.

2. The B-spline regression and its control polygon.

Denote  by  Stk,n  the  linear  space  of  all  n-th  order  spline  functions  defined  on  a  set  of
non-decreasing  knots  tk,n = 8ti<i=1

2 n+k ,  where  tn = a,  tn+k+1 = b.  In  this  paper  we  will  use
splines  with  simple  knots,  except  for  the  n  left  and  right  most  knots  which  will  be
assumed coalescent, i.e., tk,n = 8t1 = ... = tn < tn+1 < ... < tn+k < tn+k+1 = ... = t2 n+k<.
Following the Curry-Schoenberg theorem, a spline regression function f œ Stk,n ,  can be
expressed as 

f Htk,n; xL = q ' NnHxL = ⁄i=1
p qi  Ni,nHxL, 

where  q = Hq1, ..., qpL '  is  a  vector  of  real  valued  regression  coefficients  and
NnHxL = HN1,nHxL, ..., Np,nHxLL ',  p = n + k, are B-splines of order n, defined on tk,n . It is
well  known  that  ⁄i= j-n+1

j Ni,nHtL = 1,  for  any  t œ @t j, t j+1L,  j = n, ..., n + k,  and

Ni,nHtL = 0 for t – @ti, ti+nD.
In the sequel, where necessary, we will emphasize the dependence of the spline f Htk,n; xL
on q  by using the alternative notation f Htk,n, q; xL.
The spline regression problem of Section 1 can now be more precisely stated as follows.
For a fixed order of the spline n, given a sample of observations 8yi, xi<i=1

N , estimate the
number of knots k, their locations tk,n and the regression coefficients, q . 

In  order  to  solve  this  estimation  problem  and  develop  the  GeD  spline  estimator,  our
purpose  in  this  section  will  be  first  to  introduce  an  alternative  way  of  expressing  the
spline regression f Htk,n, q; xL. Recall that the standard way is to consider it as a function
of  the  independent  variable  x œ @a, bD,  following  the  expression
f Htk,n, q; xL = ⁄i=1

p qi  Ni,nHxL.  Alternatively,  f Htk,n, q; xL  can  be  viewed as  a  special  case
of  a  parametric  spline  curve  QHtL,  t œ @a, bD.  A  parametric  spline  curve  QHtL  is  given
coordinate-wise as
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(2)QHtL = 8xHtL, yHtL< = 8⁄i=1
p xi  Ni,nHtL, ⁄i=1

p qi  Ni,nHtL< ,

where  t  is  a  parameter,  and  xHtL  and  yHtL  are  spline  functions,  defined  on  one  and  the
same set of knots tk,n, with coefficients xi  and qi , i = 1, ..., p, respectively. If the coeffi-
cients xi  in (2) are chosen to be the knot averages

(3)xi
* = Hti+1 + ... + ti+n-1L ê Hn - 1L, i = 1, ..., p,

then it is possible to show that the identity

(4) xHtL = ⁄i=1
p xi

* Ni,nHtL = t  , 

referred to as the linear precision property of B-splines, holds. In view of (2) and (4), the
spline regression function f Htk,n, q; xL can be expressed as a parametric spline curve as

(5) Q*HtL = 8t, f Htk,n, q; tL< = 8⁄i=1
p xi

* Ni,nHtL, ⁄i=1
p qi  Ni,nHtL< , 

where  t œ @a, bD  and  xi
*  is  the  average  of  the  n - 1  consecutive  knots  ti+1, ..., ti+n-1

given by  (3).  In  what  follows,  it  will  be  convenient  to  use Q*HtL  and f Htk,n, q; tL  inter-
changeably to denote a functional spline regression curve. 

The  values  xi
*  given  by  (3)  are  known as  the  Greville  abscissae.  We will  alternatively

use  the  notation  x*Htk,nL,  to  indicate  the  dependence  of  the  set  of  Greville  sites
x* = 8x1

*, ..., xp
* < ª x*Htk,nL on the knots tk,n . 

The interpretation (5) of the regression function f Htk,n, q; xL  as a parametric spline curve
Q*HtL  is fundamental for our aim of developing a geometrically motivated least squares,
variable knot, spline regression smoother. It  allows us to characterize the spline regres-
sion curve Q*HtL  by a polygon, which is closely related to Q*HtL, and is called the control
polygon  of  Q*HtL,  denoted  by  CQ*HtL.  It  is  constructed  by  connecting  the  points
ci = Hxi

*, qiL,  i = 1, ..., p,  called  control  points,  by  straight  lines.  So,  CQ*Hxi
*L = qi ,

i = 1, ..., p.  In Fig.1,  the geometric  relationship  between a spline regression curve and
its control polygon CQ*HtL  is illustrated. This relationship is due to the fact that both the
x and y coordinates of the control points ci , i = 1, ..., p, are related to the spline regres-
sion  curve  Q*HtL.  More  precisely,  the  x-coordinates,  xi

* ,  are  the  Greville  sites  (3),
obtained from the knots tk,n , and the y-coordinates, qi , are simply the spline regression
coefficients. Since, ⁄i= j-n+1

j Ni,nHtL = 1,  for any t œ @t j, t j+1L, j = n, ... , n + k, the curve

Q*HtL  is a convex combination of its control points, and its graph lies within the convex
hull  of  its  control  polygon  CQ* .  The  convex  hull  of  c1, ..., cp  is  the  smallest  convex
polygon, enclosing these points. Due to the convex hull property, the curve is in a close
vicinity of its control polygon which is illustrated in Fig. 1 with respect to two adjacent
polynomial segments of Q*HtL. The grey areas in Fig. 1 are the two convex hulls, formed
by c3, c4, c5  and c4, c5, c6 ,  within which the two segments of Q*HtL,  for  t œ @t5, t6D  and
t œ @t6, t7D, lie. For further details related to geometric modelling with splines we refer to
Cohen et al. (2001) and the classic book by Farin (2002).
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Fig. 1. A quadratic, functional spline regression curve Q*HtL  and its control polygon CQ* .

Another  reason for  the  spline  regression curve  Q*HtL  to  be close to  its  control  polygon
CQ*HtL  is  that  Q*HtL  is  the  Schoenberg's  variation  diminishing  spline  approximation  of
CQ*HtL, i.e.,

(6)V@CQ*D HtL = ⁄i=1
p  CQ*Hxi

*L Ni,nHtL = ⁄i=1
p qi  Ni,nHtL ª Q*HtL,

where xi
* , i = 1, 2, ...,p, are the Greville abscissae, obtained from tk,n  and CQ*Hxi

*L = qi

by the definition of the control polygon.

Given  a  set  of  knots,  tk,n,  the  spline  approximation  V@gD HxL = ⁄i=1
p gHxi

*L Ni,nHxL  of  any
function g, defined on @a, bD , is known as the Schoenberg's variation diminishing spline
(VDS) approximation of order n to g, on the set of knots tk,n. It is constructed by simply
evaluating g  at the Greville sites (3) and taking the values gHxi

*L  as the B-spline coeffi-
cients of the VDS approximation.

It  is  important  to  recall  a  property  of  V@gD,  which  is  crucial  for  developing  the  GeD
estimator.  That is,  the VDS approximation, V@gD  is shape preserving since it  preserves
the shape of the function g it approximates. More precisely, if g is positive, then V@gD  is
also positive, if g  is monotone, then V@gD  is also monotone, and if g  is convex, V@gD  is
also convex. The variation diminishing character of V@gD  is due to the fact that it crosses
any  straight  line  at  most  as  many  times  as  does  the  function  g  itself.  In  view  of  the
convex hull property and the shape preserving property of (6) it is more clear why Q*HtL
lies so close to its control polygon CQ*HtL. 
In  summary,  it  has  been  established  that  the  spline  regression  function  f Htk,n, q; xL,
(which we alternatively  denoted as Q*HxL,  x œ @a, bD),  can be expressed in the form (5)
and that its control polygon, C f Htk,n,q;xL , has vertices ci = Hxi

*, qiL, i = 1, ... p, where xi
*  are

the Greville sites (3), obtained from tk,n . The latter suggests that, given n and k, locating
the knots tk,n  and finding the regression coefficients q  of f Htk,n, q; xL, based on the set of
observations 8yi, xi<i=1

N , is equivalent to finding the location of the x- and y-coordinates
of the vertices of C f Htk,n,q;xL . This establishes the important fact that estimation of tk,n  and
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q  affects  the  geometrical  position  of  the  control  polygon  C f Htk,n,q;xL ,  which,  due  to  the
shape  preserving  and  convex  hull  properties,  defines  the  location  of  the  spline  curve
f Htk,n, q; xL. Inversely, locating the vertices ci  of C f Htk,n,q;xL  affects the knots tk,n , through
(3),  and  the  values  of  q ,  and  hence  affects  the  position  of  the  regression  curve
f Htk,n, q; xL.  The latter conclusion motivates the construction, in stage A of GeDS, of a
control polygon as a linear least squares spline fit to the data, whose knots determine the
knots tk,n,  and whose B-spline coefficients are viewed as an initial estimate of q , which
is improved further in stage B (see Section 3). This is the basis of our approach to con-
structing the GeD variable knot spline approximation to the unknown function f  in (1),
and this is developed in the next section.

3. Geometrically designed spline regression.

In this section we introduce the GeD spline regression method which is motivated by the
ideas,  outlined  in  Section  2.  The  method  "positions"  first  an  initial  control  polygon,
which  reproduces  the  "shape"  of  the  data,  applying  least  squares  approximation.  Sec-
ondly, an optimal set of knots of a higher order Hn > 2L  smooth spline curve is found, so
that  it  preserves the shape of  the initial  control  polygon and then this curve is fitted to
the  data,  to  adjust  its  position  in  the  LS  sense.  In  this  way,  it  is  ensured  that  the  n-th
order smooth LS fit follows the shape of the initial control polygon, and hence the shape
of  the  data.  This  procedure  simultaneously  produces  quadratic,  cubic,  or  higher  order
splines and the LS fit with the minimum residual sum of squares is chosen as the final fit
which  recovers  best  the  underlying  unknown  function  f .  The  two  stages  of  this
approach  may  be  given  a  formal  interpretation  as  certain  optimization  problems  with
respect to the variables k, tk,n, q  and n.  Hence, the approach produces a solution which
does  not  necessarily  coincide  with  the  globally  optimal  solution  under  the  free-knot
non-linear  optimization  approach.  As  illustrated  by  the  numerical  examples  presented
here and also in Kaishev et al. (2006), it produces LS spline fits which are characterized
by a small number of non-coalescent knots and very low mean square errors. Thus, GeD
spline fits are shown to be nearly optimal (see the example in Section 5 and also exam-
ples 1 and 2 of Kaishev et al., 2006) and to enjoy some very good large sample proper-
ties,  such  as  asymptotic  normality,  established  in  Section  4.  The  latter  allow  for  the
construction of asymptotic confidence intervals illustrated in Section 5. The GeD spline
estimation involves the following two stages:

Stage A.  Fix the order n = 2. Starting from a straight  line fit  and adding one knot at  a
time, find the least squares linear spline fit  f̀  Hdl,2, à; xL = ⁄i=1

p ài  Ni,2HxL  with a number
of  internal  knots  l ,  number  of  B-splines  p = l + 2  and  with  a  set  of  knots
dl,2 = 8d1 = d2 < d3 < ... < dl+2 < dl+3 = dl+4<,  such  that  the  ratio  of  the  residual  sums of
squares

RSSHl + qL êRSSHlL = ‚
j=1

N  Hy j - f̀  Hdl+q,2; x jLL2 í‚
j=1

N  Hy j - f̀  Hdl,2; x jLL2 ¥ aexit

7 V. Kaishev, D. Dimitrova, S. Haberman and R. Verrall



where aexit  is a certain threshold level. This means that f̀  Hdl,2, à; xL  could not be signifi-
cantly improved if q more knots are added, q ¥ 1, and therefore, f̀  Hdl,2, à; xL  adequately
reproduces the "shape" of the unknown, underlying function f . The linear LS spline fit
f̀  Hdl,2, à; xL  is  viewed  as  a  control  polygon  with  vertices  Hxi, àiL,  i = 1, ..., p,  where
xi ª di+1,  i = 1, ..., p.  The  fit  f̀  Hdl,2, à; xL  is  constructed  following  an  algorithm
described in Appendix A. 

Stage B. For each of the values of n = 3, ...,nmax, find the optimal position of the knots
t
é
l-Hn-2L,n , as a solution of the constrained minimization problem

(7)

min
tl-Hn-2L,n,

xi+1< ti+n<xi+n-1,
i=1,...,k

± f̀  Hdl,2, à; xL - C f Htl-Hn-2L,n,à;xLµ¶ ,

where  ∞g¥¶ := maxa§x§b » gHxL »  defines  the  uniform  (L¶ )  norm  of  a  given  function
gHxL,  and  xi ,  i = 1, ..., p  are  the  x-coordinates  of  the  vertices  of  the  control  polygon
f̀  Hdl,2, à; xL  obtained  in  stage  A.  In  fact,  minimization  in  (7)  is  over  all  polygons
C f Htl-Hn-2L,n,à;xL  with verticesHxi

*, àiL, whose x-coordinates coincide with the Greville sites

x*Htl-Hn-2L,nL, and whose y-coordinates, coincide with the y-coordinates ài  of the vertices
of  the  polygon  f̀  Hdl,2, à; xL.  Clearly,  the  two  polygons  f̀  Hdl,2, à; xL  and  C f Htl-Hn-2L,n,à;xL
have  the  same  number  of  vertices  p = l + 2,  since  the  number  of  internal  knots  in
tl-Hn-2L,n  is l - Hn - 2L.
As shown in Kaishev et al. (2006), the optimization problem (7) has no optimal solution
such that the minimum in (7) is zero, i.e., for which C f Htél-Hn-2L,n,à;xL ª f̀  Hdl,2, à; xL. Instead,

the objective of  stage B, (i.e. of the minimization in (7)) is to produce a set of optimal
knots t

é
l-Hn-2L,n , which ensures that f̀  Hdl,2, à; xL  becomes (nearly) the control polygon of

the spline regression function f Htél-Hn-2L,n, à; xL,  i.e.,  that C f Htél-Hn-2L,n,à;xL > f̀  Hdl,2, à; xL.  In
this way, t

é
l-Hn-2L,n  is placed so that f Htél-Hn-2L,n, à; xL  becomes (nearly) the Schoenberg's

variation diminishing spline approximation of f̀  Hdl,2, à; xL  and hence, due to its convex
hull  and shape preserving properties (see Section 2), f Htél-Hn-2L,n, à; xL  lies very close to
f̀  Hdl,2, à; xL, and hence to the "shape" of the data for which the linear LS approximation
is f̀  Hdl,2, à; xL  (according to stage A). This is the fundamental  concept  of  optimal knot
placement in GeDS. For a proof of the fact that f Htél-Hn-2L,n, à; xL is nearly a VDS approxi-
mation of  f̀  Hdl,2, à; xL  with appropriate error  bounds, we refer  to Kaishev et al.  (2006)
(see Theorem 1 and Corollaries 1.1 and 1.2).

However, we note that the fit f Htél-Hn-2L,n, à; xL  will not be a least squares approximation
to the data set. In order to obtain an LS fit  to the data and at the same time to preserve
the  shape  of  f Htél-Hn-2L,n, à; xL,  its  optimal  knots  t

é
l-Hn-2L,n  are  preserved,  whereas  its

B-spline  coefficients  ài  are  released  and  are  assumed  to  be  unknown  parameters,  q ,
which  are  estimated  in  the  least  squares  sense,  using  8yi, xi<i=1

N .  Thus,  for  a  fixed

n = 3, ...,nmax, we find the least squares fit f̀ Itél-Hn-2L,n, q̀; xM which solves
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minq  A‚
j=1

N  Hy j - f Htél-Hn-2L,n, q; x jLL2E.
Finally, we choose the order nè  whose fit f̀ Itél-Hnè-2L,nè , q̀; xM  has the minimum residual sum

of squares. In this way, along with the number of knots and their locations, the degree of
the  spline  is  also  estimated.  This  is  an  important  feature  of  the  proposed  estimation
method  which  is  rarely  offered  by  other  spline  estimation  procedures.  One  alternative
that we are aware of is the MDL method of Lee (2000). Of course, any of the produced
final fits of order n ∫ nè  could be used, if other features were more desirable, for example
if better smoothness were required.

Since  (7)  is  a  constrained  non-linear  optimization  problem,  and  although  for  linear
splines,  our  experience  shows that  it  is  still  difficult  to  solve.  As  with  other  nonlinear
optimization  problems,  finding  the  global  optimum  is  not  guaranteed.  The  knots
t
é
l-Hn-2L,n ,  which are the optimal solution,  may also be (almost) coalescent  and this may

cause edges and corners in the final LS fit in stage B. To avoid these complications, the
following simple knot placement method, called the averaging knot location method, is
shown in Kaishev et al. (2006) to produce an approximation, t

è
l-Hn-2L,n ,  given by (8), to

the optimal solution t
é
l-Hn-2L,n  of (7). Bounds of this approximation are also established in

Kaishev et al. (2006).

The averaging knot location method

Given  the  control  polygon  f̀  Hdl,2, à; xL  of  stage  A,  for  each  of  the  values  of
n = 3, ...,nmax,  select  the  knot  placement  t

è
l-Hn-2L,n  with  internal  knots,  defined  as  the

averages of the x-coordinates of the vertices of f̀  Hdl,2, à; xL, i.e.

(8)têi+n = Hdi+2 + ...+ di+nL ê Hn - 1L, i = 1, ... , l - Hn - 2L.
The choice of the knots t

è
l-Hn-2L,n  according to (8) leads to an improvement in the bounds

established  by  Theorem  1  in  Kaishev  et  al.  (2006),  which  hold  for  t
é
l-Hn-2L,n .  The

improved bounds for the set of knots t
è
l-Hn-2L,n  are given by Theorem 2 and its Corollar-

ies 2.1 and 2.2 in Kaishev et al. (2006).

In summary, using the averaging knot location method (8), the GeDS estimation method

simultaneously  produces  LS  spline  fits  f̀ Itèl-Hn-2L,n, q̀; xM  of  order  n = 2, 3, ...  with  the

same number of basis functions p = l - Hn - 2L + n = l + 2. Hence, the spline estimation
spaces St

è
l-Hn-2L,n , n = 2, 3, ...  are of one and the same dimension. Note that from (8) when

n = 2, t
è
l,2 ª dl,2  and therefore, q̀ ª à  and f̀ Itèl,2, q̀; xM ª f̀  Hdl,2, à; xL. For further approxi-

mation theoretic results and related algorithmic details, we refer to Kaishev et al. (2006). 

4. Local asymptotic properties of the GeD spline estimator.

The purpose of this section is to explore the local asymptotic properties of the proposed
GeD  spline  estimation  method  and  provide  some  large  sample  statistical  inference.
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Local  asymptotic  properties  of   least  squares  spline  regression  estimators  are  useful  in
constructing  asymptotic  confidence  intervals  and  have  been  considered  by  Zhou  et  al.
(1998),  and  more  recently  by  Huang  (2003).  To  investigate  the  pointwise  asymptotic

behaviour  of  the  GeDS  estimation  error  f̀ Itèl-Hn-2L,n, q̀; xM - f HxL  we  will  consider  its

decomposition

f̀ Itèl-Hn-2L,n, q̀; xM - f  HxL
= A f̀ Itèl-Hn-2L,n, q̀; xM - E f̀ Itèl-Hn-2L,n, q̀; xME + AE f̀ Itèl-Hn-2L,n, q̀; xM - f HxLE

where the first and the second terms on the right-hand side are correspondingly referred
to as the variance and the bias terms. As was noted in Section 1, the design points 8xi<i=1

N

can either be deterministic or random. Without loss of generality, we will consider here
the  case  of  random design  points  under  which  8xi, yi<i=1

N  is  a  random sample  from the
joint distribution HX, YL  of the predictor variable X  and the response variable Y. It will
be convenient to use the notation x”÷ = Hx1, ..., xNL. In addition, we assume that the errors
are  homoscedastic,  so  that  se2HxL = EHe2 » X = xL = s2  is  a  constant.  The  results  easily
carry over to the heteroscedastic errors and fixed design case. 

Thus,  in  our  asymptotic  analysis,  as  the  sample  size,  Ni ,  grows  to  infinity  with
i = 1, 2, ..., under some mild assumptions with respect to the sequences of design points8x j< j=1

Ni  (see  Assumption  1),  we  show that  the  GeDS  estimation  method  produces  esti-

mates of the knots t
è
li -Hn-2L,n, n ¥ 2, whose global mesh ratios form a sequence bounded

in  probability  (see  Lemmas  2  and  3).  Based  on  these  results,  and  on  a  theorem  from
approximation  theory  establishing  the  stability  of  the  L¶  norm  of  the  L2  projections
onto the linear space of splines Stk,n ,  we will  establish two asymptotic properties of the
GeDS estimator.  Thus,  Theorems 1  and 2  below give  a  bound for  the  bias  term and a
sufficient condition for it to be of negligible magnitude compared to the variance term.

We  also  study  in  this  section  the  asymptotic  distribution  of  the  GeD  spline  estimator

f̀ Itèl-Hn-2L,n, q̀; xM.  After  its  appropriate  standardization,  f̀ Itèl-Hn-2L,n, q̀; xM  is  shown  (see

Theorem 3) to converge to a standard normal distribution, given that a suitable value of
aexit  in the stopping rule of Stage A has been chosen. This characteristic of GeDS allows
for  the  construction  of  asymptotic  confidence  intervals,  illustrated  in  Section  5.  Proofs
of the results of this section are given in Appendix B.

In what follows, we will rely on the sufficient asymptotic conditions for the least squares
spline estimate to be well defined, established by Huang (2003). As is well  known, the
least squares estimate is an orthogonal  projection relative to an appropriate inner prod-
uct.  The  latter  can  be  defined  relative  to  a  finite  sample  asX f1, f2\N = 1ÅÅÅÅÅÅN  ⁄i=1

N f1HxiL f2HxiL  and  its  theoretical  version  is  given  asX f1, f2\ = Ÿa

b
f1HxL f2HxL pHxL „ x, for any square integrable functions f1  and f2  on @a, bD.

Denote by ∞ f1¥N = X f1, f1\N
1ê2  and ∞ f1¥ = X f1, f1\1ê2.  It  will  be required that as the sam-

ple size N  goes to infinity,  X f1, f2\N  converges to X f1, f2\,  (see Remark 1). In order to
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investigate the asymptotic properties of the GeD spline estimator we will need the follow-
ing assumption.

Assumption  1.  Let  zi ,  i = 1, 2, ...  be  a  sequence  of  designs  on  @a, bD  with  spectrum
points  zi = 8a § xi,1 < ... < xi,Ni § b<,  Ni-1 < Ni ,  at  which  the  unknown  function  f  is
observed.  Assume  the  spectrum  points  of  zi  are  randomly  generated  according  to  a
density  0< pHxL < ¶,  with  respect  to  Lebesgue  measure,  such  that  the  sequence  of
global mesh ratios 

Mzi

H1L = max1§ j§Ni -1Hxi, j+1-xi, j LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅmin1§ j§Ni -1Hxi, j+1-xi, jL
is bounded in probability, i.e., Mzi

H1L = OPH1L.
Note  that  this  assumption  requires  the  design  points  to  be  asymptotically  quasi-uni-
formly  distributed.  Our  asymptotic  setting  is  such  that  for  each  random  sample8xi, j, yi, j< j=1

Ni ,  the  GeD  spline  regression  estimation  method  produces  a  linear  least

squares  spline  fit  f̀  Hdl i ,2, à; xL  with  knots  dl i ,2  and  higher  order  fits  f̀ Itèl i-Hn-2L,n, q̀; xM,
n > 2, with knots t

è
l i-Hn-2L,n,  where l i  is determined by the choice of  the parameter aexit

i

for each i . Recall  that the latter parameter controls the exit from GeDS by the stopping
rule  given  in  stage  A and that  the spline estimation spaces St

è
l i -Hn-2L,n ,  n = 2, 3, ...  are  of

one and the same dimension, p = l i + 2. Next, we give a result which relates the rate of
growth of l i  to that of the sample size Ni , which is used in proving the main theorems of
this section.

Lemma 1.  Given a sequence of random samples 8xi, j, yi, j< j=1
Ni  from HX, YL, there exists

a  sequence  of  aexit
i ,  such  that,  for  a  fixed  n ¥ 2,  limiØ¶ l i ë Ni

1êH2 n+1L = ¶  and
limiØ¶ l i  log Ni ê Ni = 0. 

It is clear that the sequence of aexit
i  from Lemma 1 could be different for different values

of  n.  Unfortunately,  one  can  not  specify  general  conditions  which  will  determine  a
required sequence aexit

i  since the latter depends on the variability of the unknown func-
tion f  and the noise level  s.  The following two lemmas establish other characteristics
of the knot meshes generated in stage A of GeDS which are important for the asymptotic
analysis. 

Lemma 2.  If  Assumption 1  holds  then,  for  any sequence aexit
i ,  the  sequence of  global

mesh ratios, Mdi

HrL ,
Mdi

HrL = max2§ j§l i -r+3 Hdi, j+r-di, j LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅmin2§ j§l i -r+3Hdi, j+r-di, j L ,  r ¥ 2

of the knot sets dl i ,2 = 8di,1 = di,2 < ... < di,l i+3 = di,li +4<, generated according to stage A of
GeDS, is bounded in probability. In other words, there exists a constant g > 0  such that,
except on an event whose probability tends to zero as Ni Ø ¶ , Mdi

HrL § g .

Given the result of Lemma 1, we next show that under Assumption 1 the knot sequences

of the higher order fit f̀ Itèli -Hn-2L,n , q̀; xM, n ¥ 2 of Stage B also have bounded mesh ratios.
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Lemma 3. If the sequence of global mesh ratios, Mdi

HrL , r ¥ 2, of the knot sets dl i ,2 , gener-
ated  in  stage  A,  is  bounded  in  probability  by  a  constant  g > 0,  then  the  global  mesh
ratio,  Mt

è
i

HrL ,  r ¥ n,  of  the  knot  sequence  t
è
li -Hn-2L,n ,  n ¥ 2,  generated  in  stage  B,  is  also

bounded by g , i.e.,

(9)Mt
è
i

HrL = maxn§ j§l i +1+n-rHtêi, j+r-t
ê
i, j LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅminn§ j§l i +1+n-rHtêi, j+r-t

ê
i, jL § g ,   r ¥ n

except on an event whose probability tends to zero as Ni Ø ¶ .

Remark 1. Under Assumption 1, the assertions of Lemmas 1 and 3 imply that, for some
appropriate  aexit

i ,  limiØ¶ l i  log Ni ê Ni = 0,  and  that  the  global  mesh  ratio  of  the  knots

t
è
l i-Hn-2L,n  is  bounded.  Since  f̀ Itèl i-Hn-2L,n , q̀; xM,  n ¥ 2,  is  an  LS estimator,  one can  apply

Lemma 2.3 of Huang (2003) to establish that the latter are sufficient  conditions for the
theoretical norm to be close to the empirical norm, uniformly over  St

è
l i -Hn-2L,n , i.e.,

(10)sups » ∞s¥Ni
ê ∞s¥ - 1 » = oPH1L,

where s œ St
è
l i -Hn-2L,n . This is essential for our asymptotic analysis since it ensures that the

problem of least squares GeD spline estimation is well defined.

We are now in a position to establish the asymptotic properties of the GeD spline estima-
tor, which are used later in constructing asymptotic pointwise confidence intervals. We
start with the following theorem.

Theorem 1. Under Assumption 1, there exist a sequence aexit
i  and an absolute constant

C such that, except on an event whose probability tends to zero as Ni Ø ¶,±EI f̀ Itèl i-Hn-2L,n, q̀; xM … x”÷ M - f HxLµ¶ § C rNi ,

where rNi = inf  9∞ f - s¥¶ : s œ St
è
l i -Hn-2L,n=,  n ¥ 2.

The bound in Theorem 1 can be specified,  imposing a certain smoothness condition on
the unknown function f . Thus, if f œ Cq@a, bD  and n ¥ q  then it can be shown (see e.g.
Schumaker, 1981) that rNi = OHl i-qL. 
Next, we consider the asymptotic behaviour of the bias term, compared to the variance
term in the GeDS estimation error decomposition. We state the following theorem.

Theorem  2.  Under  Assumption  1,  if  f œ Cq@a, bD ,  then  there  exists  a  sequence  aexit
i

such that, for n ¥ q,

supxœ@a,bD ƒƒƒƒƒƒƒƒƒ EI f̀ Itèl i -Hn-2L,n,q̀;xM…x”÷ M- f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ,
Var I f̀ Itèl i -Hn-2L,n,q̀;xM…x”÷ M ƒƒƒƒƒƒƒƒƒ = oPH1L.

The  above  theorem  together  with  the  following  result  facilitates  the  construction  of
pointwise confidence intervals for f HxL, using the proposed GeD spline estimator.
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Theorem  3.  Under  Assumption  1,  suppose limlØ¶ E@e2 8†e§>l< » X = xD = 0.  Then,  there
exists a sequence aexit

i  such that

PA f̀ Itèl i-Hn-2L,n, q̀; xM - EI f̀ Itèli -Hn-2L,n, q̀; xM … x”÷ M § t "##################################################Var I f̀ Itèli-Hn-2L,n, q̀; xM … x”÷ M À x”÷ E - F HtL
= oPH1L
for x œ @a, bD and t œ . Hence,

f̀ Itèl i -Hn-2L,n,q̀;xM-EI f̀ Itèl i -Hn-2L,n,q̀;xM…x”÷ MÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ,
Var I f̀ Itèl i -Hn-2L,n,q̀;xM…x”÷ M  öd H0, 1L ,     Ni ö

iØ¶ ¶. 

Theorem 3 establishes asymptotic normality of the variance term in the error decomposi-
tion of the GeDS estimator and enables us to construct asymptotic pointwise confidence

intervals  for  EI f̀ Itèl i-Hn-2L,n, q̀; xM … x”÷ M,  n ¥ 2.  Furthermore,  combining  Theorem  3  with

Theorem 2  allows  for  the  construction  of  asymptotically  valid  confidence  intervals  for
the unknown function f . 

As known from the standard regression theory, in the finite sample case,

VarI f̀ Itèl-Hn-2L,n, q̀; xM … x”÷ M = s2 Nn
' HxL 8XF 'Hx”÷ L, FHx”÷ L\N<-1

NnHxL,
where the matrix FHx”÷ L = HNnHx1L, ..., NnHxNLL. Thus, a 100 H1 - aL % confidence interval
can be constructed as

(11)f̀ Itèl-Hn-2L,n, q̀; xM ≤ z1-aê2 "#################################################VarI f̀ Itèl-Hn-2L,n, q̀; xM … x”÷ M , 

where  z1-aê2 = F-1H1 - a ê2L,  n ¥ 2.  Following  Theorem 6.1  of  Huang  (2003),  in  view
of Remark 1,

VarI f̀ Itèl-Hn-2L,n, q̀; xM … x”÷ M = s2 Nn
' HxL 8XF 'Hx”÷ L, FHx”÷ L\<-1

NnHxL H1 + oPH1LL,
which means that (11)  is an asymptotically valid confidence interval.

To conclude this section, recall that Theorem 2 gives the conditions on the order of the
number of knots under which the bias term of the GeDS estimation error is of negligible
magnitude  compared  to  the  variance  term.  The  condition  limiØ¶ l i ë Ni

1êH2 q+1L = ¶
implies that, in order not to consider the bias asymptotically in constructing a confidence
interval, one needs to use higher number of knots than what is needed for achieving the
optimal rate of convergence, Ni

-2qêH2 q+1L . The latter is obtained by balancing the rate of
convergence of the squared bias and the variance terms (see Stone, 1982). Therefore, as
was noted by Zhou et al. (1998), the knots obtained by using the generalized cross valida-
tion (GCV) as a model selector lead to undersmoothed f̀ HxL  and can not be used for the
construction of asymptotic confidence intervals for f HxL.
Using the proposed GeDS estimator, the optimal rate of convergence is achievable (see
Section 6). However, in order for the conditions of Theorem 3 to be fulfilled and to have
asymptotic  normality,  one  should  use  values  of  aexit

i  higher  than  what  is  needed  for
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matching  the  optimal  rate.  The  latter  is  possible  and  one  has  a  considerable  degree  of
flexibility since the condition  limiØ¶ l i  log Ni ê Ni = 0  on the rate of growth of the num-
ber  of  knots  is  much  weaker  than  the  condition  limiØ¶ l i

2 ê Ni = 0  used  in  Zhou  et  al.
(1998).  The construction of  asymptotic  confidence intervals and appropriate  choices of
aexit

i  are illustrated in the next section, where further comments are provided.

5. Simulation studies.

The  GeDS  method  has  been  thoroughly  tested  numerically  and  compared  with  other
spline  methods  and  the  results  of  this  comparison  are  given  in  Kaishev  et  al.  (2006).
Examples include different values of signal-to-noise ratio, small and large sample sizes,
x-values  in  a  grid  or  uniformly  generated  within  @a, bD.  The  overall  conclusion  is  that
GeDS has performed very well both in terms of efficiency and quality of the fit. Here we
will illustrate briefly the GeDS method using the following test example, which appears
in Schwetlick and Schütze (1995).

Table 1. Example used to test GeDS.

Test function Interval Sample size, N xi , i = 1, ..., N Noise level, se
f  HxL = 10xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+100x2 @-2, 2D 90 xi = -2 + H2-H-2LLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ89 Hi - 1L U  H-0.05, 0.05L

For  a  simulated  data  set,  graphs of  the  linear  spline  fits,  produced at  each consecutive
iteration  in  stage  A  of  GeDS,  preceding  the  final  one,  are  given  in  Fig.  2.  As  can  be
seen,  the  initial  straight  line  fit,  presented  in  Fig.  2  (a),  is  sequentially  improved  by
adding knots, one at each iteration, to reach the fit f̀  Hd8,2; xL, plotted in Fig. 3 (a), which
can not be further significantly improved by adding more knots. Applying the averaging
knot location (8) to the knots d8,2  of the linear fit f̀  Hd8,2; xL, the set of knots t

è
8-Hn-2L,n  of

the quadratic, n = 3, and cubic, n = 4, fits, f̀ Htè8-Hn-2L,n; xL, are defined. The LS spline fits

f̀ Itè8-Hn-2L,n, q̀; xM,  resulting  from stage  B of  GeDS,  are  plotted  in  Fig.  3  (b)  and (c)  for

n = 3  and n = 4,  respectively.  The  polygons C f Hté7,3,à;xL  and C f Htè7,3,à;xL ,  plotted  in  Fig.  3

(d), using dot-dashed and dashed lines, and obtained with t
é
7,3  as the solution of (7) and

with t
è
7,3,  calculated using (8), are seen to be very close to each other and also close to

the  initial  control  polygon  f̀  Hd8,2, à; xL.  The  final  LS  fits,  f̀ Hté7,3; xL  and  f̀ Htè7,3; xL,
obtained with the optimal knots t

é
7,3  and with the knots t

è
7,3 , according to the averaging

knot  location method (8),  have close L2-errors,  respectively  0.2798  and 0.2944, which
confirms that t

è
7,3  approximates very well the optimal set of knots t

é
7,3 .
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Fig. 2. The linear spline fits, obtained at each consecutive iteration in stage A, except the final one
(given in Fig. 3 (a)).
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Fig. 3. The final GeD spline fits: (a) linear; (b) quadratic; (c) cubic; (d) graphs of f̀  Hd8,2, à; xL  - the
solid line, Cf Ité8-Hn-2L,n,à;xM  - the dot-dashed line and Cf Itè8-Hn-2L,n,à;xM  - the dashed line; The dotted curve

in (a), (b), (c) is the true function.

The details of the final linear fit, and its corresponding quadratic and cubic spline fits are
presented in Table 2. The computation time for the three fits is less then a second (0.89
sec. on a PC, Pentium IV, 1.4 Ghz, 512 RAM). Note that the values for the parameters
aexit  and b  are the default preassigned values 0.9, 0.5  (see Kaishev et al. 2006 for more
detailed  comments  on  the  effect  of  the  choice  of  aexit  and  b).  The  parameter  b  is
defined and discussed in step 5 of Stage A (see Appendix A). As can be seen, the func-
tion f  is symmetric and GeDS places, symmetrically around the origin, 8, 7 and 6 knots,
respectively for the linear, quadratic and cubic LS fits. As can be seen from Table 2, all
the  fits  are  of  a  very  good  quality  with  respect  to  the  MSE,  defined  as

MSE = ‚
i=1

N  Hyi - f̀ HxiLL2 ë N . 

Table 2. Summary of GeD spline fits.

Fit
No

Graph n k Internal knots aexit, b L2 - error, MSE

1 Fig. 3, HaL 2 8 8-1.1, -0.33,-0.12,-0.05, 0.05, 0.12, 0.32, 0.96< 0.9, 0.5 0.2699, 0.000189

2 Fig. 3, HbL 3 7 8-0.69,-0.22,-0.09, 0.00, 0.09, 0.22, 0.64< 0.9, 0.5 0.2944, 0.000127

3 Fig. 3, HcL 4 6 8-0.51,-0.17,-0.04, 0.04, 0.16, 0.47< 0.9, 0.5 0.2631, 0.000119
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Based on the L2-errors for the linear, quadratic and cubic fits given in Table 2, the best
GeDS fit for this particular data set is the cubic one. We have compared it (No 3, Table
2)  with  the  optimal  cubic  spline  fits  obtained  applying  the  LS non-linear  optimization
method (NOM) and its penalized version (PNOM), due to Lindstrom (1999). The results
are summarized in Table 3. As can be seen, the three fits are very close, comparing the
L2-errors, the MSE and the location of the knots. However, the GeD fit recovers best the
original  function as indicated by the corresponding MSE values. The computation time
needed  for  GeDS is  less  then  a  second  (0.89  sec.)  whereas  for  PNOM and  NOM it  is
respectively, 4.5 hours and 1.4 hours, using the Mathematica function NMinimize.

Table 3. The fits obtained by GeDS, PNOM and NOM.

Fit
No

Method n k Internal knots L2 - error, MSE

1 GeDS 4 6 8-0.51,-0.17,-0.04, 0.04, 0.16, 0.47< 0.2631, 0.000119

2 PNOM 4 6 8-0.53,-0.16,-0.06, 0.05, 0.17, 0.51< 0.2623, 0.000131

3 NOM 4 6 8-0.48,-0.15,-0.07, 0.05, 0.18, 0.40< 0.2614, 0.000154

We test GeDS by fitting 1000 simulated data sets from the function f , given in Table 1.
A frequency plot of the number of internal knots of the 1000 linear GeD spline fits and
box plots of the MSE values of the linear, quadratic and cubic GeDS fits are presented in
Fig. 4 (a) and (b). 
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Fig.  4.  (a):  A  frequency  plot  of  the  number  of  knots  of  the  1000  linear  GeD  spline  fits;  (b):  Box
plots of the MSE values of the 1000 linear, quadratic and cubic GeD spline fits.

The box plots presented in  Fig.  4 (b)  confirm that  the best  GeDS fit  for  this  particular
function is  the cubic one.  Since the number of  internal  knots,  k,  of  a quadratic  (cubic)
GeDS fit is always one (two) less than that of the corresponding linear fit, the frequency
plot for the 1000 quadratic (cubic) GeDS fits is identical to the one in Fig. 4 (a) but over
the range k = 5, 6, 7, 8, 9, 10  (k = 4, 5, 6, 7, 8, 9). The 1000 linear, quadratic and cubic
GeD spline  fits,  with  median  number  of  regression  functions  n + k = 10,  have  median
L2-errors  0.260,  0.267,  0.264  respectively,  which  are  lower  than  0.277,  obtained  by
Schwetlick  and  Schütze  (1995)  for  a  quartic  (of  order  5)  fit  with  the  same number  of
regression parameters and optimally located knots. The optimal quartic fit of Schwetlick
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and  Schütze  (1995)  is  obtained  starting  from 15  knots  and  after  three  time-consuming
knot generation, removal and relocation stages.

Constructing confidence intervals

The second part of our simulation study is devoted to the implementation of the asymp-
totic results for the developed GeD spline estimator, given in Section 4. We illustrate the
practical  construction  of  finite-sample  pointwise  confidence  intervals  for  the  unknown
function  f HxL  and  test  their  performance  in  achieving  the  required  nominal  coverage
probability levels. For this purpose, we again use the test function given in Table 1 but
with  normally  distributed  error  term,  ei ~ H0, 0.015L,  and  for  equally  spaced  design
points  8x j< j=1

Ni ,  i = 1, 2, 3  with  sample sizes N1 = 100,  N2 = 500,  N3 = 1000.  To assess

the finite-sample performance of the constructed confidence intervals we evaluate their
empirical coverage probabilities. The latter are calculated as the percentage of coverage
of the true value f HxL  by the 100H1 - aL% confidence interval defined in (11), based on
1000 replications for each sample size, Ni . Confidence intervals are obtained using both
the true s2  ("oracle" value) and its estimate, s̀2 , proposed by Hall et al. (1990) but only
the results for the oracle values are presented. This is because our simulated results show
that the estimate s̀2  exhibits positive bias for small samples (see also Zhou et al., 1998)
and hence, unjustifiably increases the empirical coverage probability values.

In order to compute the GeD spline estimator f̀ Itèl-Hn-2L,n, q̀; xM  and its variance,  needed

in  (11),  we  have  selected  the  sequence  aexit
1 = 0.9,  aexit

2 = 0.99,  aexit
3 = 0.999  for  the

stopping rule (see step 10 of Stage A), which determines the number of knots l  at exit of
stage A. These values of aexit  have been chosen so that the requirement of Theorems 2
and  3  with  respect  to  the  rate  of  growth  of  l  with  the  sample  size  are  met.  Thus,  the
median number of knots selected by GeDS for each aexit

i , i = 1, 2, 3, is l1 = 10, l2 = 16,
l3 = 25 correspondingly.

In  Fig.  5  we have plotted the empirical  coverage probabilities  for  95% level  pointwise
confidence  intervals  as  a  function  of  x.  The  empirical  average  coverage  probability
(EACP) over all 8x j< j=1

Ni  are also presented under each of the plots.

As  can  be  seen  from  Fig.  5,  for  all  the  linear,  quadratic  and  cubic  fits,  the  coverage
probability  converges  to  its  nominal  level  which  is  reached  for  the  cubic  fit  for  the
sample size of 1000 and median number of knots 25. The convergence for the linear and
quadratic  fits  are  slower,  as  expected,  since  the  dimension  of  the  spline  spaces  is  the
same for all the fits of different order. However, the coverage probability improves with
the  order  of  the  spline  for  all  sample  sizes.  It  has  to  be  noted  that  the  test  function  is
symmetrical with  strong and sharp variation around the origin which makes it difficult
to  fit,  based  on  noisy  data.  This  is  reflected  in  the  spikes  in  the  coverage  probability
observed in the neighborhood of the origin which almost disappear for the cubic fit with
1000 data points.
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Fig. 5. Empirical coverage probabilities of 95% pointwise confidence intervals, obtained by GeDS:
linear  fit  -  first  column;  quadratic  fit  -  second  column;  cubic  fit  -  third  column.  Sample  sizes:
N1 = 100 - first row; N2 = 500 - second row; N3 = 1000 - third row;

It  is  essential  to  mention  here  that,  for  such  finite  samples,  it  is  important  not  only  to
assess the appropriate rate of growth of the number of knots but also to determine their
absolute  number  and  location.  We  believe  that  our  number  of  knots  is  close  to  being
minimal and because they are optimally located using GeDS, the 95% nominal level of
the  coverage  probability  is  achieved  already  for  sample  size  N = 1000.  Whereas,  for
example, if we fit a cubic spline to the data, using the same number and rate of growth
of  the  knots  but  placing  them uniformly,  the  EACP is  much worse,  i.e.,  EACP= 0.20
for N = 100, EACP= 0.34 for N = 500, EACP= 0.63 for N = 1000.

Analyzing  the  rate  of  decrease  of  the  bias  term for  the  linear  fit  (not  presented),  com-
pared to its rate of decrease for the cubic fit over the sample sizes (see Fig 6, first row),
shows that this rate is much stronger for the cubic fit than in the linear case. This is not
surprising since the test function is smooth but oscillates around the origin and, using a
linear spline, it is difficult to achieve the quality of the approximation (improve the bias)
obtained by the smoother cubic fit  with same number of regression coefficients.  At the
same  time  the  variance  term  decreases  with  the  sample  size  at  a  similar  rate  in  both
cases.  This  explains  the  slight  deterioration  in  the  EACP  (from  0.78  to  0.74)  for  the
linear spline fit.
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Fig. 6.  Empirical bias (first row) and standard deviation (second row) of the cubic GeDS fits over
1000  replicates.  Sample  sizes:  N1 = 100  -  first  column;  N2 = 500  -  second  column;  N3 = 1000  -
third column;

In order to illustrate the local adaptability of the GeDS estimators (see stage A in Appen-
dix  A  and  Theorems  1  and  2  of  Kaishev  et  al.,  2006),  in  Fig.  6  we  have  plotted  the

empirical  bias  and standard  deviation  of  f̀ Itèl-Hn-2L,n, q̀; xM,  n = 4,  as a function  of  x  for

N = 100, N = 500, N = 1000. One can see that the bias term becomes negligible com-
pared  to  the  variance  term,  in  fact  for  N = 1000  it  is  on  average  300  times  smaller,
which corroborates the result  of  Theorem 2.  As with the coverage probability,  the bias
and variance also exhibit rough behaviour around the origin which  smooths out with the
sample  size.  For  brevity,  we  omit  here  the  corresponding  plots  for  the  linear  and qua-
dratic fits.

6. Discussion.

One of  the  important  characteristics  of  the  GeDS estimation  procedure  is  that  it  gives
simultaneously linear,  quadratic,  cubic, etc. fits because once the LS linear spline fit  in
stage A is found, using the averaging knot location method (8), the knots for the higher
order LS spline fits of stage B are immediately obtained. As far as we have been able to
establish,  no other  spline fitting procedure is capable of  doing this.  Hence,  one has the
flexibility  to  choose  the  degree  of  the  final  fit  providing  best  compromise  between
smoothness and accuracy.

As an alternative to the stopping rule, described in step 10 of stage A (see Appendix A),
we have implemented two additional stopping criteria according to which our algorithm
exits with number of knots which minimizes Stein's unbiased risk estimate (SURE) (see
Stein, 1981)

(12)RH f̀ L = ‚
i=1

N  Iyi - f̀ Itèk,n, q̀; xiMM2 í N + D Hk+n-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅN s2
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 or the generalized cross validation (GCV) (see e.g., Craven and Wahba, 1979) 

(13)GCVH f̀ L =
i
k
jjjjjjjj „

i=1

N  Iyi- f̀ Itèk,n,q̀;xi MM2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅN

y
{
zzzzzzzzì H1 - dHkLÅÅÅÅÅÅÅÅÅÅN L2

criterion.  We have  assumed that  the  minimum is  attained  when SURE or  GCV do not
decrease  in  two  consecutive  iterations  in  stage  A.  Rules  (12)  and  (13)  depend  on  the
choice  of  the  parameters  D and  dHkL,  and  when  D = 2  and  dHkL = k + 1  they  behave
roughly as our stopping rule. The choice D = 3 and dHkL = 3k + 1, as noted by Zhou and
Shen (2001) tends to yield a smaller model, underfitting the underlying function f . For a
comparative study of different model selection methods, we refer to Lee (2002). Apply-
ing (12) or (13), GeDS becomes entirely automatic and can be applied if such a feature
is preferred to the flexibility of controlling the output provided by our stopping rule.

We have addressed here pointwise large sample properties of this new spline estimator,
such as the asymptotic behaviour of the variance and bias components of the estimation
error  and the construction  of  confidence  intervals,  based on the established asymptotic
normality.  The  results  of  the  simulation  study  corroborate  well  with  the  theoretical
findings and support the strong practical appeal of the proposed GeD spline estimator. In
conclusion, we believe that the proposed GeDS method provides a novel solution to the
spline regression problem and in particular, to the problem of estimating the number and
position  of  the  knots.  It  is  motivated  by  geometric  arguments  and  can  be  extended  to
multivariate  non-parametric  smoothing as  well  as  to  generalized  linear  models.  Details
of how this may be done are outside the scope of this paper and are the subject of ongo-
ing research.
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Appendix A

Stage  A.  A  knot  insertion  scheme  for  variable  knot,  LS  linear  B-spline
regression.

In order to implement stage A of GeDS, an automatic knot insertion scheme is proposed
to construct  a  variable  knot,  least  squares,  linear  spline  which reproduces  the shape of
the  noise  perturbed  underlying  function  f ,  based  on  the  data  set  8xi, yi<i=1

N .  The  algo-
rithm may be given the following geometric interpretation. It starts from an LS fit, in the
form of a straight line segment, as described in step 1 below. The latter is then sequen-
tially  "broken" into  a piece-wise  linear  LS fit,  by adding knots,  one at  a time, at  those
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points, where the fit  deviates most from the shape of the underlying function,  (see Fig.
2), according to a bias driven measure of appropriately defined clusters of residuals (see
steps 2 - 8). A stopping rule is introduced, which serves as a model selector and allows
us to determine the appropriate number and location of the knots of the linear spline fit
f̀  Hdl,2, à; xL  (see steps 9 - 10). So, as is illustrated in Section 5, the linear GeD spline fit
f̀  Hdl,2, à; xL  is a sufficiently accurate reconstruction of f , given that no further smooth-
ness is required. If a smoother fit is needed, a higher order GeD spline is constructed in
stage B of the estimation procedure, based on the geometrical form of f̀  Hdl,2, à; xL.
The  knot  insertion  scheme in  stage  A  can  be  described  as  a  "greedy"  one (see Hastie,
1989), since at each iteration it places a knot, d* , where a within-cluster bias dominated
measure is maximal (see steps 3 and 5),  which is very near to the site where placing a
knot  gives  the  largest  reduction  in  the  residual  sum of  squares.  This  can  be  quantified
using the fact that given an LS fit f̀  Hdk,2; xL, with 0< k < l  internal knots, if a knot, d* ,
is  added  in  the  interval  @d j*, d j*+1D,  2 § j* < k + 2,  then  the  updated  LS fit  f̀  Hdk+1,2

* ; xL
adjusts  best  to  the  data  in  @d j* , d j*+1D,  since  † f̀  Hdk,2; xL - f̀  Hdk+1,2

* ; xL§,  x œ @d j, d j+1D
decreases exponentially in † j* - j§, which is the number of knots between x and d* . This
follows  from  Theorem  1  of  Zhou  and  Shen  (2001).  A  formal  description  of  the  algo-
rithm of stage A is given next.

Step  1.  Set  n = 2  and  k = 0.  The  starting  set  of  knots  is  d0,2 = 8di<i=1
4  with

a = d1 = d2 < d3 = d4 = b. Find the LS spline fit in the form of the straight line 

f̀  Hd0,2, à; xL = à1 N1,2HxL + à2 N2,2HxL .
Calculate  the  residuals  r i ª rHxiL = yi - f̀  Hd0,2, à; xiL,  i = 1, ...,N  and  the  residual  sum
of squares RSSHkL = ⁄i=1

N r i
2  of the fit with k  internal knots. Since the i -th residual rHxiL,

is a function of xi , i = 1, 2, ...,N  we will refer to xi  as the x-value of the i -th residual.

Step 2.  Group the consecutive residuals r i ,  i = 1, ...,N  into clusters by their  sign, i.e.,
find a number u, 1 § u § N  and a set of integer values d j > 0, j = 1, ...,u such that 

signHr1L = ... = signHrd1L ∫ signHrd1+1L = signHrd1+2L = ... = signHrd1+d2L ∫
... ∫ signHrd1+d2+...+du-1+1L = signHrd1+d2+...+du-1+2L = ... = signHrd1+d2+...+duL,

and ⁄ j=1
u d j = N . Note that the clusters are formed and numbered consecutively, follow-

ing the order of the residuals, i.e., the order of their x-values x1 < x2 < ... < xN .

Step 3. For each of the u clusters of residuals of identical signs, calculate the within-clus-
ter mean residual value 

mj = I⁄i=1
d j rdH jL+iM ëd j

= I⁄i=1
d j  H f̀ dH jL+i - E f̀ dH jL+iL + HE f̀ dH jL+i - fdH jL+iL + edH jL+iM ëd j

= ⁄i=1
d j  H f̀ dH jL+i - E f̀ dH jL+iL êd j + ⁄i=1

d j  HE f̀ dH jL+i - fdH jL+iL êd j + ⁄i=1
d j edH jL+i êd j ,

j = 1, ...,u,
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where  dH jL = d1 + d2 + ...+ d j-1  and  the  three  terms  in  the  last  decomposition  can  be
interpreted as the within-cluster average variance, bias, and error, respectively. Calculate
also the within-cluster range h j , defined as the difference between the right-most and the
left-most x-value of the residuals belonging to the j -th cluster, i.e., 

h j = xdH j+1L - xdH jL+1 , j = 1, ...,u. 

Throughout the sequel we will refer to @xdH jL+1, xdH j+1LD  as the within-cluster interval.

Step  4.  Find  mmax = max1§ j§u HmjL  and  hmax = max1§ j§u Hh jL  and  calculate,  correspond-
ingly,  the  normalized  within-cluster  mean  and  range  values  mj

£ = mj êmmax  and

h j
£ = h j ê hmax, so that 0 < mj

£ § 1, 0< h j
£ § 1.

Step 5. Calculate the cluster weights

(14)w j = b mj
£ + H1 - bL h j

£ ,  j = 1, ... ,u,

where,  b  is  a  real  valued  parameter,  0§ b § 1.  The  value  w j  serves  as  a  measure,
attached to the j -th cluster of  residuals of  identical  sign, which measures the deviation
of  the  current  least  squares  linear  spline  fit  f̀  Hdk,2, à; xL  from  f  in  the  j -th  cluster.
Obviously,  the  weight  w j  itself  is  a  weighted  sum  of  the  normalized,  within-cluster
mean and within-cluster  range values and the weight b  is one of the parameters whose
value will need to be chosen at the start of stage A.

Step  6.  Order  the  clusters  in  descending  order  of  their  weights  w j ,  j = 1, ... ,u,  i.e.,
create  a  list  of  corresponding  cluster  indices  8 j1, j2, ... , ju<  such  that
w j1 ¥ w j2 ¥ ... ¥ w ju . Thus, in order to improve f̀  Hdk,2, à; xL, in the next step a new knot
is  inserted,  at  an  appropriate  location,  in  the  within-cluster  interval  of  x-values,  corre-
sponding to the j1-th cluster.

Step 7. Check whether there is already a knot in the within-cluster interval of the j1-th
cluster,  which  is  the  cluster  with  the  highest  rank,  according  to  the  ordering  in  step  6,
i.e., check whether

di œ @xdH j1L+1, xdH j1L+d j1
D ,

for each internal knot di œ dk,2, i = 3, ... ,k + 2. If there is already a knot in the within-
cluster  interval  of  the j1-th cluster,  the check is repeated for  the cluster  with index j2 ,
and so on until the first cluster, with index js, say, is found, whose within-cluster inter-
val does not contain a knot. Then, insert a new knot d*  at the site

(15)d* = ikjjjj ‚
i=dH jsL+1

dH jsL+d js  r i xi
y{zzzzìikjjjj ‚

i=dH jsL+1

dH jsL+d js  r i
y{zzzz .

Note that (15) is a convex combination of the x-values of the residuals in the js-th clus-
ter,  hence  d* œ @xdH jsL+1, xdH jsL+d js

D.  The  new  knot  position  (15)  can  be  viewed  as  a

weighted average of the x-values of the residuals in the js-th cluster, the weights being
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the  normalized  values  of  the  residuals.  The  set  of  knots  dk,2  is  being  updated  as
dk+1,2

* := dk,2 ‹ 8d*<.
So, a new knot is placed where the cluster weight (14) is maximal. In view of the decom-
position in step 3, the cluster weight (14) can be referred to as a bias dominated measure
since the bias component is dominant in this cluster compared to the variance and error
terms (at least at the initial iterations when there are small number of knots in the linear
fit and the approximation error is large).

Step 8. Find the least squares linear spline fit

f̀  Hdk+1,2
* , à; xL = ‚

i=1

p

 ài  Ni,2HxL .
Since dk+1,2

*  contains the new knot, the number of B-splines, p, will increase by one.

Step  9.  Calculate  the  residuals  r i ,  i = 1, ...,N  and  the  RSSHk + 1L  for  f̀  Hdk+1,2
* , à; xL.

Note that dk,2 Õ dk+1,2
*  implies that Sdk,2 Õ Sdk+1,2

* . Hence f̀  Hdk,2, à; xL œ Sdk+1,2
*  and apply-

ing the orthogonality property of least squares estimation it is easy to see that 

(16)‚
i=1

N

 Iyi - f̀  Hdk,2, à; xiLM2 = ‚
i=1

N

 Iyi - f̀  Hdk+1,2
* , à; xiLM2 + ‚

i=1

N

 I f̀  Hdk+1,2
* , à; xiL - f̀  Hdk,2, à; xiLM2 .

Equation  (16)  implies  that  RSSHk + 1L < RSSHkL.  It  is  obvious  also  that  RSSHkL  will
converge to zero as k + nö N  since, when k + n = N  the fit  interpolates the data. The
greedy fashion of the new knot placement (15), combined with equation (16), gives rise
to the rule for exit from stage A of the GeDS method, and this is given next.

Step 10.  Let q ¥ 1  be a fixed integer,  chosen at the beginning of  stage A. If  the set of
knots, dk+1,2

* , contains less than q internal knots, then the algorithm goes back to step 2.
If this is not the case and dk+1,2

*  contains q or more internal knots then the ratio

a = RSSHk + 1L êRSSHk + 1 - qL
is  calculated.  Note  that  from  (16)  it  follows  that  0< a < 1.  If  a ¥ aexit ,  an  exit  from
stage  A  is  performed  with  the  spline  fit  f̀  Hdl,2, à; xM,  l = k + 1 - q.  If  a < aexit  then
f̀  Idk+1,2

* , à; xM  is taken as the current fit and the algorithm goes back to step 2. The value
aexit  is chosen ex ante to be close to 1. This is because the ratio a  will be close to zero if
the fit has improved significantly by adding d*  and will tend to 1 if no improvement has
been  achieved  in  the  last  q + 1  consecutive  iterations,  i.e,  the  corresponding  values  of
the RSS have stabilized. Our experience has shown that this rule of exit works well as a
model  selector  with  q = 2,  i.e.,  stabilization  of  RSS  in  three  consecutive  iterations  is
sufficient  to  exit  from  stage  A  with  the  appropriate  number  of  knots.  Hence,  in  the
implementation of GeDS, q has been fixed equal to 2 by default.

This completes the description of stage A of GeDS.

Geometrically designed, variable knot regression splines: Asymptotics and inference 24



Appendix B

Proof  of  Lemma  1.  The  condition  limiØ¶ l i ë Ni
1êH2 n+1L = ¶,  implies  that,  for  a  fixed

n ¥ 2,  the  number  of  knots  in  the  set  t
è
l i-Hn-2L,n  should  grow  at  a  rate  higher  than

Ni
1êH2 n+1L . At the same time the condition limiØ¶ l i  log Ni ê Ni = 0  requires the number of

knots l i  to be of order smaller than Ni ê log Ni . From the definition of the stopping rule in
step 10 of Stage A (see Appendix A), it can be seen that 0< aexit

i < 1  and that aexit
i = 1

corresponds  to  l i = Ni ,  aexit
i = 0  corresponds  to  l i = const.  Hence,  aexit

i  can  be  chosen
(close to 1) so that l i  is of order  between  Ni

1êH2 n+1L  and Ni ê log Ni , as required. Ñ
Proof  of  Lemma 2.  Given  Assumption  1,  in  order  to  prove  that  Mdi

HrL § g ,  we  need to
investigate  the knot  meshes dl i ,2  resulting from stage A of  GeDS, as i Ø ¶ .  Following
step 7 of stage A (see Appendix A), it can be seen that the knots dli ,2  are non-replicate
and are obtained as weighted averages of design points within clusters (see (15)). Con-
sider two consecutive design points, xi, j ,  xi, j+1 .  These may either  be part  of  a common
cluster of residuals, in which case xi, j  and/or xi, j+1  could be the end points of the cluster
interval,  or  fall  in  two  separate  (consecutive)  clusters.  Analyzing  all  possible  ways  in
which  two  consecutive  design  points,  xi, j ,  xi, j+1 ,  may  become part  of  residual  clusters
(see step 1 and 2 of Stage A in Appendix A), one can conclude that a knot can be placed
at each of the design points xi, j , xi, j+1  and no more than one knot can be located in the
interval  Hxi, j, xi, j+1L.  Hence,  irrespective  of  aexit

i ,  the  knots  dl i ,2  disperse  between  the
design points without concentration as i Ø ¶ . Therefore, for any sequence aexit

i  and for
any  ¶ > 0,  there  will  exist  g* > 0  such  that  PH†Mdi

HrL§ > g*L § ¶,  r ¥ 2,  since  the  global
mesh ratio of the meshes of data points, Mzi

H1L , is bounded in probability and according to
(15) the knots dli ,2  are weighted averages of the data points within a cluster. Therefore,
there should exist  a constant g > 0  such that   Mdi

HrL § g  all  i ,  except  on an event whose
probability is zero as Ni Ø ¶. Ñ
Proof of Lemma 3. Consider first the case n = 2. Then, t

è
li ,2 ª dli ,2  and (9) is fulfilled for

any  r ¥ 2  by  assumption.  In  the  case  n > 2,  from  (8)  we  have
têi, j+n = Hdi, j+2 + ...+ di, j+nL ê Hn - 1L and for r = n, (9) is fulfilled since,

Mt
è
i

HnL = maxn§ j§l i +1Htêi, j+n-t
ê
i, j LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅminn§ j§l i +1Htêi, j+n-t

ê
i, jL = maxn§ j§l i +1Hdi, j+2+...+di, j+n-di, j+2-n-...-di, j LêHn-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅminn§ j§l i +1Hdi, j+2+...+di, j+n-di, j+2-n-...-di, jLêHn-1L

= maxn§ j§l i +18Hdi, j+2-di, j+2-nL+...+Hdi, j+n-di, jL<ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅminn§ j§l i +18Hdi, j+2-di, j+2-nL+...+Hdi, j+n-di, j L< § Hn-1L max2§ j§l i -n+3Hdi, j+n-di, j LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn-1L min2§ j§l i -n+3Hdi, j+n-di, jL § g
except on an event whose probability tends to zero as Ni Ø ¶. In fact, it is also fulfilled
for r > n since, Mt

è
i

HrL § g  leads to Mt
è
i

Hr+1L § g , which completes the proof. Ñ
Proof  of  Theorem  1.  According  to  Lemma  1,  there  exists  a  sequence  aexit

i  such  that
limiØ¶ l i  log Ni ê Ni = 0.  In  addition,  under  Assumption  1,  from Lemma 3  we  have  that
the global mesh ratio, Mt

è
i

HnL , of t
è
l i-Hn-2L,n  is bounded. The result now follows from Theo-

rem  5.1  of  Huang  (2003)  and  Theorem  1  of  De  Boor  (1976),  establishing  a  bound  in
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terms  of  the  global  mesh  ratio  Mt
è
i

HnL  on  the  L¶  norm  of  the  orthogonal  least  squares

projection onto the space of splines of order n with knots t
è
li-Hn-2L,n.Ñ

Proof  of  Theorem  2.  According  to  Lemma  1,  there  exists  a  sequence  aexit
i  such  that

limiØ¶ l i ë Ni
1êH2 q+1L = ¶ and limiØ¶ l i  log Ni ê Ni = 0. It follows from Theorem 1 that

(17)supxœ@a,bD … EI f̀ Itèli -Hn-2L,n, q̀; xM … x”÷ M - f HxL … = OPHl i-qL.
Under the above conditions and in view of Remark 1, it can be shown, following Theo-
rem 5.2 of Huang (2003), that

(18)Var I f̀ Itèli -Hn-2L,n, q̀; xM … x”÷ M ¥ C Hl i ê NiL H1 + oPH1LL.
where C  is a constant independent of x. The desired result now follows combining (17)
and (18).Ñ
Proof  of  Theorem 3.  It  was established that  under Assumption 1,  Lemma 3 holds and
the sets of knots t

è
l i-Hn-2L,n  have bounded mesh ratios. From Lemma 1 it follows that for

some  appropriate  sequence  aexit
i ,  limiØ¶ l i  log Ni ê Ni = 0,  and  hence  (10)  holds  (see

Remark  1).  The  assertion  of  the  theorem  now  follows  from  Theorem  3.1  of  Huang
(2003)  since  limiØ¶ l i  log Ni ê Ni = 0  implies  the  condition   limiØ¶ l i ê Ni = 0  required
there. Ñ
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