48 research outputs found

    In Vitro Evolution of Allergy Vaccine Candidates, with Maintained Structure, but Reduced B Cell and T Cell Activation Capacity

    Get PDF
    Allergy and asthma to cat (Felis domesticus) affects about 10% of the population in affluent countries. Immediate allergic symptoms are primarily mediated via IgE antibodies binding to B cell epitopes, whereas late phase inflammatory reactions are mediated via activated T cell recognition of allergen-specific T cell epitopes. Allergen-specific immunotherapy relieves symptoms and is the only treatment inducing a long-lasting protection by induction of protective immune responses. The aim of this study was to produce an allergy vaccine designed with the combined features of attenuated T cell activation, reduced anaphylactic properties, retained molecular integrity and induction of efficient IgE blocking IgG antibodies for safer and efficacious treatment of patients with allergy and asthma to cat. The template gene coding for rFel d 1 was used to introduce random mutations, which was subsequently expressed in large phage libraries. Despite accumulated mutations by up to 7 rounds of iterative error-prone PCR and biopanning, surface topology and structure was essentially maintained using IgE-antibodies from cat allergic patients for phage enrichment. Four candidates were isolated, displaying similar or lower IgE binding, reduced anaphylactic activity as measured by their capacity to induce basophil degranulation and, importantly, a significantly lower T cell reactivity in lymphoproliferative assays compared to the original rFel d 1. In addition, all mutants showed ability to induce blocking antibodies in immunized mice.The approach presented here provides a straightforward procedure to generate a novel type of allergy vaccines for safer and efficacious treatment of allergic patients

    Family Business Restructuring:A Review and Research Agenda

    Get PDF
    Although business restructuring occurs frequently and it is important for the prosperity of family firms across generations, research on family firms has largely evolved separately from research on business restructuring. This is a missed opportunity, since the two domains are complementary, and understanding the context, process, content, and outcome dimensions is relevant to both research streams. We address this by examining the intersection between research on business restructuring and family firms to improve our knowledge of each area and inform future research. To achieve this goal, we review and organize research across different dimensions to create an integrative framework. Building on current research, we focus on 88 studies at the intersection of family firm and business restructuring research to develop a model that identifies research needs and suggests directions for future research

    Human cord blood derived immature basophils show dual characteristics, expressing both basophil and eosinophil associated proteins

    Get PDF
    Basophils are blood cells of low abundance associated with allergy, inflammation and parasite infections. To study the transcriptome of mature circulating basophils cells were purified from buffy coats by density gradient centrifugations and two-step magnetic cell sorting. However, after extensive analysis the cells were found to be transcriptionally inactive and almost completely lack functional mRNA. In order to obtain transcriptionally active immature basophils for analysis of their transcriptome, umbilical cord blood cells were therefore cultured in the presence of interleukin (IL)-3 for 9 days and basophils were enriched by removing non-basophils using magnetic cell sorting. The majority of purified cells demonstrated typical metachromatic staining with Alcian blue dye (95%) and expression of surface markers FceRI and CD203c, indicating a pure population of cells with basophil-like phenotype. mRNA was extracted from these cells and used to construct a cDNA library with approximately 600 000 independent clones. This library served as tool to determine the mRNA frequencies for a number of hematopoietic marker proteins. It was shown that these cells express basophil/mast cellspecific transcripts, i.e. b-tryptase, serglycin and FceRI a-chain, to a relatively low degree. In contrast, the library contained a high number of several eosinophil-associated transcripts such as: major basic protein (MBP), charcot leyden crystal (CLC), eosinophil cationic protein (ECP), eosinophil derived neurotoxin (EDN) and eosinophil peroxidase (EPO). Out of these transcripts, MBP and EPO were the most frequently observed, representing 8% and 3.2% of the total mRNA pool, respectively. Moreover, in a proteome analysis of cultured basophils we identified MBP and EPO as the two most prominent protein bands, suggesting a good correlation between protein and mRNA analyses of these cells. The mixed phenotype observed for these cells strengthens the conclusion that eosinophils and basophils are closely linked during human hematopoietic development. The dual phenotype also indicates that other cytokines than IL-3 or cell surface interactions are needed to obtain the full basophil specific phenotype in vivo

    Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity

    Get PDF
    Flt3 has emerged as a potential regulator of hematopoietic stem cells (HSC). Sixty percent of cells in the mouse marrow Lin(-)Sca1(+)c-kit(+) HSC pool expressed flt3. Although single cell cloning showed comparable high proliferative, myeloid, B, and T cell potentials of Lin(-)Sca1(+)c-kit(+)flt3(+) and Lin(-)Sca1(+)c-kit(+)flt3(-) cells, only Lin(-)Sca1(+)c-kit(+)flt3(-) cells supported sustained multilineage reconstitution. In striking contrast, Lin(-)Sca1(+)c-kit(+)flt3(+) cells rapidly and efficiently reconstituted B and T lymphopoiesis, whereas myeloid reconstitution was exclusively short term. Unlike c-kit, activation of flt3 failed to support survival of HSC, whereas only flt3 mediated survival of Lin(-)Sca1(+)c-kit(+)flt3(+) reconstituting cells. Phenotypic and functional analysis support that Lin(-)Sca1(+)c-kit(+)flt3(+) cells are progenitors for the common lymphoid progenitor. Thus, upregulation of flt3 expression on Lin(-)Sca1(+)c-kit(+) HSC cells is accompanied by loss of self-renewal capacity but sustained lymphoid-restricted reconstitution potential

    Targeted inhibition of ERα signaling and PIP5K1α/Akt pathways in castration‐resistant prostate cancer

    No full text
    Selective ERα modulator, tamoxifen, is well tolerated in a heavily pretreated castration‐resistant prostate cancer (PCa) patient cohort. However, its targeted gene network and whether expression of intratumor ERα due to androgen‐deprivation therapy (ADT) may play a role in PCa progression is unknown. In this study, we examined the inhibitory effect of tamoxifen on castration‐resistant PCa in vitro and in vivo. We found that tamoxifen is a potent compound that induced a high degree of apoptosis and significantly suppressed growth of xenograft tumors in mice, at a degree comparable to ISA‐2011B, an inhibitor of PIP5K1α that acts upstream of PI3K/AKT survival signaling pathway. Moreover, depletion of tumor‐associated macrophages using clodronate in combination with tamoxifen increased inhibitory effect of tamoxifen on aggressive prostate tumors. We showed that both tamoxifen and ISA‐2011B exert their on‐target effects on prostate cancer cells by targeting cyclin D1 and PIP5K1α/AKT network and the interlinked estrogen signaling. Combination treatment using tamoxifen together with ISA‐2011B resulted in tumor regression and had superior inhibitory effect compared with that of tamoxifen or ISA‐2011B alone. We have identified sets of genes that are specifically targeted by tamoxifen, ISA‐2011B or combination of both agents by RNA‐seq. We discovered that alterations in unique gene signatures, in particular estrogen‐related marker genes are associated with poor patient disease‐free survival. We further showed that ERα interacted with PIP5K1α through formation of protein complexes in the nucleus, suggesting a functional link. Our finding is the first to suggest a new therapeutic potential to inhibit or utilize the mechanisms related to ERα, PIP5K1α/AKT network and MMP9/VEGF signaling axis, providing a strategy to treat castration‐resistant ER‐positive subtype of prostate cancer tumors with metastatic potential
    corecore