466 research outputs found

    The Micro-Pillar Shear-Stress Sensor MPS3 for Turbulent Flow

    Get PDF
    Wall-shear stress results from the relative motion of a fluid over a body surface as a consequence of the no-slip condition of the fluid in the vicinity of the wall. To determine the two-dimensional wall-shear stress distribution is of utter importance in theoretical and applied turbulence research. In this article, characteristics of the Micro-Pillar Shear-Stress Sensor MPS3, which has been shown to offer the potential to measure the two-directional dynamic wall-shear stress distribution in turbulent flows, will be summarized. After a brief general description of the sensor concept, material characteristics, possible sensor-structure related error sources, various sensitivity and distinct sensor performance aspects will be addressed. Especially, pressure-sensitivity related aspects will be discussed. This discussion will serve as ‘design rules’ for possible new fields of applications of the sensor technology

    Quark-Gluon Plasma/Black Hole duality from Gauge/Gravity Correspondence

    Full text link
    The Quark-Gluon Plasma (QGP) is the QCD phase of matter expected to be formed at small proper-times in the collision of heavy-ions at high energy. Experimental observations seem to favor a strongly coupled QCD plasma with the hydrodynamic properties of a quasi-perfect fluid, i.e. rapid thermalization (or isotropization) and small viscosity. The theoretical investigation of such properties is not obvious, due to the the strong coupling. The Gauge/Gravity correspondence provides a stimulating framework to explore the strong coupling regime of gauge theories using the dual string description. After a brief introduction to Gauge/Gravity duality, and among various existing studies, we focus on challenging problems of QGP hydrodynamics, such as viscosity and thermalization, in terms of gravitational duals of both the static and relativistically evolving plasma. We show how a Black Hole geometry arises naturally from the dual properties of a nearly perfect fluid and explore the lessons and prospects one may draw for actual heavy ion collisions from the Gauge/Gravity duality approach.Comment: 6 pages, 4 figures, invited talk at the EPS HEP 2007 Conference, Manchester (UK), and at the ``Deuxiemes rencontres PQG-France'', Etretat (2007); reference adde

    Atomic scale switches based on self-assembled surface magic clusters

    Get PDF
    Atomic scale switches working at room temperature represent the ultimate level of device miniaturization. Using scanning tunneling microscopy, we find a bistable switching between two mirror-symmetric configurations of self-assembled magic rare earth silicide clusters on the Si(111) 7 X 7 surface. Density functional theory reveals an energy barrier of 1.3 eV between the two cluster configurations, suppressing the switching even at room temperature. However, intentional switch- ing between the two states is possible in the presence of a close tunneling tip due to a tip-induced lowering of the energy barrier

    Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting

    Get PDF
    Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH

    Experimental results of the bundle test QUENCH-19 with FeCrAl claddings

    Get PDF
    The QUENCH-19 test objective was the comparison of FeCrAl(Y) and ZIRLO™ claddings under similar electrical power and gas flow conditions, simulating an early phase of hypothetical severe accident. In common with the previous QUENCH-15 experiment (performed with ZIRLO™ claddings), the electrical power was the same during pre-oxidation and transient stages. After reaching of the maximum power of 18.12 kW the power value was kept constant during about 2000 s. At the end of this phase the maximal peak cladding temperature of about 1500 °C was reached. Much lower heating rate in comparison to QUENCH-15 was measured. Exceeding 1400 °C sharp increase of hydrogen release rate was observed. The test was terminated with reflood by injecting of about 48 g/s of water from the bundle bottom. The temperatures at all bundle elevations decrease immediately after water injection. The total hydrogen release during the whole test was 9.2 g compared to 47.6 g in the QUENCH-15 test with much shorter high electrical power phase. The videoscope observation showed the damage of several claddings at the bundle elevations between 850 and 1000 mm. The claddings were failed either due to melting (mostly) or by spalling of small annular cladding parts

    Stability of bicontinuous cubic phases in ternary amphiphilic systems with spontaneous curvature

    Get PDF
    We study the phase behavior of ternary amphiphilic systems in the framework of a curvature model with non-vanishing spontaneous curvature. The amphiphilic monolayers can arrange in different ways to form micellar, hexagonal, lamellar and various bicontinuous cubic phases. For the latter case we consider both single structures (one monolayer) and double structures (two monolayers). Their interfaces are modeled by the triply periodic surfaces of constant mean curvature of the families G, D, P, C(P), I-WP and F-RD. The stability of the different bicontinuous cubic phases can be explained by the way in which their universal geometrical properties conspire with the concentration constraints. For vanishing saddle-splay modulus κˉ\bar \kappa, almost every phase considered has some region of stability in the Gibbs triangle. Although bicontinuous cubic phases are suppressed by sufficiently negative values of the saddle-splay modulus κˉ\bar \kappa, we find that they can exist for considerably lower values than obtained previously. The most stable bicontinuous cubic phases with decreasing κˉ<0\bar \kappa < 0 are the single and double gyroid structures since they combine favorable topological properties with extreme volume fractions.Comment: Revtex, 23 pages with 10 Postscript files included, to appear in J. Chem. Phys. 112 (6) (February 2000

    Employing Channel Probing to Derive End-of-Life Service Margins for Optical Spectrum Services

    Get PDF
    Optical Spectrum as a Service (OSaaS) spanning over multiple transparent optical network domains, can significantly reduce the investment and operational costs of the end-to-end service. Based on the black-link approach, these services are empowered by reconfigurable transceivers and the emerging disaggregation trend in optical transport networks. This work investigates the accuracy aspects of the channel probing method used in Generalized Signal to Noise Ratio (GSNR)-based OSaaS characterization in terrestrial brownfield systems. OSaaS service margins to accommodate impacts from enabling neighboring channels and end-of-life channel loads are experimentally derived in a systematic lab study carried out in the Open Ireland testbed. The applicability of the lab-derived margins is then verified in the HEAnet production network using a 400 GHz wide OSaaS. Finally, the probing accuracy is tested by depleting the GSNR margin through power adjustments utilizing the same 400 GHz OSaaS in the HEAnet live network. A minimum of 0.92 dB and 1.46 dB of service margin allocation is recommended to accommodate the impacts of enabling neighboring channels and end-of-life channel loads. Further 0.6 dB of GSNR margin should be allocated to compensate for probing inaccuracies
    corecore