111 research outputs found

    Asymmetrically cut crystals as optical elements for highly collimated x‐ray beams

    Full text link
    Asymmetrically cut perfect crystals, in both the Laue and Bragg geometries, are examined as single crystal monochromators for x‐ray beams that are collimated to a small fraction of the Darwin width, as is typical in experiments with coherent x rays. Both the Laue and asymmetric Bragg geometries are plagued by an inherent chromatic aberration that increases the beam divergence much beyond that of the symmetric Bragg geometry. Measurements from a recent experiment at the ESRF are presented to compare Si(220) (symmetric Bragg), diamond(111) (asymmetric Laue), and diamond(111) (symmetric Bragg inclined) geometries. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70952/2/RSINAK-66-2-1506-1.pd

    Temperature-dependent electron-phonon coupling in La2x_{2-x}Srx_xCuO4_4 probed by femtosecond X-ray diffraction

    Get PDF
    The strength of the electron-phonon coupling parameter and its evolution throughout a solid's phase diagram often determines phenomena such as superconductivity, charge- and spin-density waves. Its experimental determination relies on the ability to distinguish thermally activated phonons from those emitted by conduction band electrons, which can be achieved in an elegant way by ultrafast techniques. Separating the electronic from the out-of-equilibrium lattice subsystems, we probed their re-equilibration by monitoring the transient lattice temperature through femtosecond X-ray diffraction in La2x_{2-x}Srx_xCuO4_4 single crystals with xx=0.1 and 0.21. The temperature dependence of the electron-phonon coupling is obtained experimentally and shows similar trends to what is expected from the \textit{ab-initio} calculated shape of the electronic density-of-states near the Fermi energy. This study evidences the important role of band effects in the electron-lattice interaction in solids, in particular in superconductors

    Scientific Opportunities with an X-ray Free-Electron Laser Oscillator

    Full text link
    An X-ray free-electron laser oscillator (XFELO) is a new type of hard X-ray source that would produce fully coherent pulses with meV bandwidth and stable intensity. The XFELO complements existing sources based on self-amplified spontaneous emission (SASE) from high-gain X-ray free-electron lasers (XFEL) that produce ultra-short pulses with broad-band chaotic spectra. This report is based on discussions of scientific opportunities enabled by an XFELO during a workshop held at SLAC on June 29 - July 1, 2016Comment: 21 pages, 12 figure

    Direct 2D spatial coherence determination using the Fourier analysis method Multi parameter characterization of the P04 beamline at PETRA III

    Get PDF
    We present a systematic 2D spatial-coherence analysis of the soft-X-ray beamline P04 at PETRA III for various beamline configurations. The influence of two different beam-defining apertures on the spatial coherence properties of the beam is discussed and optimal conditions for coherence-based experiments are found. A significant degradation of the spatial coherence in the vertical direction has been measured and sources of this degradation are identified and discussed. The Fourier-analysis method, which gives fast and simple access to the 2D spatial coherence function of the X-ray beam, is used for the experiment. Here, we exploit the charge scattering of a disordered nanodot sample allowing the use of arbitrary X-ray photon energies with this method

    Data availability and requirements relevant for the Ariel space mission and other exoplanet atmosphere applications

    Full text link
    The goal of this white paper is to provide a snapshot of the data availability and data needs primarily for the Ariel space mission, but also for related atmospheric studies of exoplanets and brown dwarfs. It covers the following data-related topics: molecular and atomic line lists, line profiles, computed cross-sections and opacities, collision-induced absorption and other continuum data, optical properties of aerosols and surfaces, atmospheric chemistry, UV photodissociation and photoabsorption cross-sections, and standards in the description and format of such data. These data aspects are discussed by addressing the following questions for each topic, based on the experience of the "data-provider" and "data-user" communities: (1) what are the types and sources of currently available data, (2) what work is currently in progress, and (3) what are the current and anticipated data needs. We present a GitHub platform for Ariel-related data, with the goal to provide a go-to place for both data-users and data-providers, for the users to make requests for their data needs and for the data-providers to link to their available data. Our aim throughout the paper is to provide practical information on existing sources of data whether in databases, theoretical, or literature sources.Comment: 58 pages, submitted to RAS Techniques and Instruments (RASTI). The authors welcome feedback: corresponding author emails can be found as footnotes on page

    Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL

    Get PDF
    The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range

    Coherence properties of focused X-ray beams at high-brilliance synchrotron sources

    Get PDF
    An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here Gaussian Schell-model beams and thin optical elements are considered. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam-defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherence, is also analyzed in detail. As an example, the coherence properties in the focal region of compound refractive lenses at the PETRA III synchrotron source are analyzed
    corecore