15,507 research outputs found

    Preferential attachment during the evolution of a potential energy landscape

    Full text link
    It has previously been shown that the network of connected minima on a potential energy landscape is scale-free, and that this reflects a power-law distribution for the areas of the basins of attraction surrounding the minima. Here, we set out to understand more about the physical origins of these puzzling properties by examining how the potential energy landscape of a 13-atom cluster evolves with the range of the potential. In particular, on decreasing the range of the potential the number of stationary points increases and thus the landscape becomes rougher and the network gets larger. Thus, we are able to follow the evolution of the potential energy landscape from one with just a single minimum to a complex landscape with many minima and a scale-free pattern of connections. We find that during this growth process, new edges in the network of connected minima preferentially attach to more highly-connected minima, thus leading to the scale-free character. Furthermore, minima that appear when the range of the potential is shorter and the network is larger have smaller basins of attraction. As there are many of these smaller basins because the network grows exponentially, the observed growth process thus also gives rise to a power-law distribution for the hyperareas of the basins.Comment: 10 pages, 10 figure

    Paramagnon dispersion in ÎČ\beta-FeSe observed by Fe LL-edge resonant inelastic x-ray scattering

    Full text link
    We report an Fe LL-edge resonant inelastic x-ray scattering (RIXS) study of the unusual superconductor ÎČ\beta-FeSe. The high energy resolution of this RIXS experiment (≈ \approx\,55 \,meV FWHM) made it possible to resolve low-energy excitations of the Fe 3d3d manifold. These include a broad peak which shows dispersive trends between 100-200 \,meV along the (π,0)(\pi,0) and (π,π)(\pi,\pi) directions of the one-Fe square reciprocal lattice, and which can be attributed to paramagnon excitations. The multi-band valence state of FeSe is among the most metallic in which such excitations have been discerned by soft x-ray RIXS

    Non-Adiabatic Spin Transfer Torque in Real Materials

    Full text link
    The motion of simple domain walls and of more complex magnetic textures in the presence of a transport current is described by the Landau-Lifshitz-Slonczewski (LLS) equations. Predictions of the LLS equations depend sensitively on the ratio between the dimensionless material parameter ÎČ\beta which characterizes non-adiabatic spin-transfer torques and the Gilbert damping parameter α\alpha. This ratio has been variously estimated to be close to 0, close to 1, and large compared to 1. By identifying ÎČ\beta as the influence of a transport current on α\alpha, we derive a concise, explicit and relatively simple expression which relates ÎČ\beta to the band structure and Bloch state lifetimes of a magnetic metal. Using this expression we demonstrate that intrinsic spin-orbit interactions lead to intra-band contributions to ÎČ\beta which are often dominant and can be (i) estimated with some confidence and (ii) interpreted using the "breathing Fermi surface" model.Comment: 18 pages, 9 figures; submitted to Phys. Rev.

    The Emergence of the Thick Disk in a CDM Universe II: Colors and Abundance Patterns

    Full text link
    The recently emerging conviction that thick disks are prevalent in disk galaxies, and their seemingly ubiquitous old ages, means that the formation of the thick disk, perhaps more than any other component, holds the key to unravelling the evolution of the Milky Way, and indeed all disk galaxies. In Paper I, we proposed that the thick disk was formed in an epoch of gas rich mergers, at high redshift. This hypothesis was based on comparing N-body/SPH simulations to a variety of Galactic and extragalactic observations, including stellar kinematics, ages and chemical properties.Here examine our thick disk formation scenario in light of the most recent observations of extragalactic thick disks. In agreement, our simulted thick disks are old and relatively metal rich, with V-I colors that do not vary significantly with distance from the plane. Further, we show that our proposal results in an enhancement of alpha-elements in thick disk stars as compared with thin disk stars, consistent with observations of the relevant populations of the Milky Way. We also find that our scenario naturally leads to the formation of an old metal weak stellar halo population with high alpha-element abundances.Comment: submitted to Ap

    Further Evidence for a Merger Origin for the Thick Disk: Galactic Stars Along Lines-of-sight to Dwarf Spheroidal Galaxies

    Full text link
    The history of the Milky Way Galaxy is written in the properties of its stellar populations. Here we analyse stars observed as part of surveys of local dwarf spheroidal galaxies, but which from their kinematics are highly probable to be non-members. The selection function -- designed to target metal-poor giants in the dwarf galaxies, at distances of ~100kpc -- includes F-M dwarfs in the Milky Way, at distances of up to several kpc. Thestars whose motions are analysed here lie in the cardinal directions of Galactic longitude l ~ 270 and l ~ 90, where the radial velocity is sensitive to the orbital rotational velocity. We demonstrate that the faint F/G stars contain a significant population with V_phi ~ 100km/s, similar to that found by a targeted, but limited in areal coverage, survey of thick-disk/halo stars by Gilmore, Wyse & Norris (2002). This value of mean orbital rotation does not match either the canonical thick disk or the stellar halo. We argue that this population, detected at both l ~ 270 and l ~ 90, has the expected properties of `satellite debris' in the thick-disk/halo interface, which we interpret as remnants of the merger that heated a pre-existing thin disk to form the thick disk.Comment: Accepted, Astrophysical Journal Letter

    SAR processing on the MPP

    Get PDF
    The processing of synthetic aperture radar (SAR) signals using the massively parallel processor (MPP) is discussed. The fast Fourier transform convolution procedures employed in the algorithms are described. The MPP architecture comprises an array unit (ARU) which processes arrays of data; an array control unit which controls the operation of the ARU and performs scalar arithmetic; a program and data management unit which controls the flow of data; and a unique staging memory (SM) which buffers and permutes data. The ARU contains a 128 by 128 array of bit-serial processing elements (PE). Two-by-four surarrays of PE's are packaged in a custom VLSI HCMOS chip. The staging memory is a large multidimensional-access memory which buffers and permutes data flowing with the system. Efficient SAR processing is achieved via ARU communication paths and SM data manipulation. Real time processing capability can be realized via a multiple ARU, multiple SM configuration

    Remote participation during glycosylation reactions of galactose building blocks: Direct evidence from cryogenic vibrational spectroscopy

    Get PDF
    The stereoselective formation of 1,2‐cis‐glycosidic bonds is challenging. However, 1,2‐cis‐selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short‐lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α‐selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium‐type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2‐cis‐glycosidic bonds
    • 

    corecore