3,709 research outputs found
Magnetoresistance of a 2-dimensional electron gas in a random magnetic field
We report magnetoresistance measurements on a two-dimensional electron gas
(2DEG) made from a high mobility GaAs/AlGaAs heterostructure, where the
externally applied magnetic field was expelled from regions of the
semiconductor by means of superconducting lead grains randomly distributed on
the surface of the sample. A theoretical explanation in excellent agreement
with the experiment is given within the framework of the semiclassical
Boltzmann equation.Comment: REVTEX 3.0, 11 pages, 3 Postscript figures appended. The manuscript
can also be obtained from our World Wide Web server:
http://roemer.fys.ku.dk/randmag.ht
Failure of conductance quantization in two-dimensional topological insulators due to non-magnetic impurities
Despite topological protection and the absence of magnetic impurities,
two-dimensional topological insulators display quantized conductance only in
surprisingly short channels, which can be as short as 100 nm for atomically
thin materials. We show that the combined action of short-range nonmagnetic
impurities located near the edges and on site electron-electron interactions
effectively creates noncollinear magnetic scatterers, and, hence, results in
strong backscattering. The mechanism causes deviations from quantization even
at zero temperature and for a modest strength of electron-electron
interactions. Our theory provides a straightforward conceptual framework to
explain experimental results, especially those in atomically thin crystals,
plagued with short-range edge disorder.Comment: 8 pages, 9 figures, 5 appendice
Non-local transport and the hydrodynamic shear viscosity in graphene
Motivated by recent experimental progress in preparing encapsulated graphene
sheets with ultra-high mobilities up to room temperature, we present a
theoretical study of dc transport in doped graphene in the hydrodynamic regime.
By using the continuity and Navier-Stokes equations, we demonstrate
analytically that measurements of non-local resistances in multi-terminal Hall
bar devices can be used to extract the hydrodynamic shear viscosity of the
two-dimensional (2D) electron liquid in graphene. We also discuss how to probe
the viscosity-dominated hydrodynamic transport regime by scanning probe
potentiometry and magnetometry. Our approach enables measurements of the
viscosity of any 2D electron liquid in the hydrodynamic transport regime.Comment: 12 pages, 4 multi-panel figure
Novel A-B type oscillations in a 2-D electron gas in inhomogenous magnetic fields
We present results from a quantum and semiclassical theoretical study of the
and resistivities of a high mobility 2-D electron gas
in the presence of a dilute random distribution of tubes with magnetic flux
and radius , for arbitrary values of and . We
report on novel Aharonov-Bohm type oscillations in and ,
related to degenerate quantum flux tube resonances, that satisfy the selection
rule , with an integer. We discuss possible
experimental conditions where these oscillations may be observed.Comment: 11 pages REVTE
Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material
When two-dimensional electron gases (2DEGs) are exposed to magnetic field,
they resonantly absorb electromagnetic radiation via electronic transitions
between Landau levels (LLs). In 2DEGs with a Dirac spectrum, such as graphene,
theory predicts an exceptionally high infrared magneto-absorption, even at zero
doping. However, the measured LL magneto-optical effects in graphene have been
much weaker than expected because of imperfections in the samples available so
far for such experiments. Here we measure magneto-transmission and Faraday
rotation in high-mobility encapsulated monolayer graphene using a custom
designed setup for magneto-infrared microspectroscopy. Our results show a
strongly enhanced magneto-optical activity in the infrared and terahertz ranges
characterized by a maximum allowed (50%) absorption of light, a 100% magnetic
circular dichroism as well as a record high Faraday rotation. Considering that
sizeable effects have been already observed at routinely achievable magnetic
fields, our findings demonstrate a new potential of magnetic tuning in 2D Dirac
materials for long-wavelength optoelectronics and plasmonics.Comment: 14 pages, 4 figure
Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene
We show that the optical transparency of suspended graphene is defined by the
fine structure constant, alpha, the parameter that describes coupling between
light and relativistic electrons and is traditionally associated with quantum
electrodynamics rather than condensed matter physics. Despite being only one
atom thick, graphene is found to absorb a significant (pi times alpha=2.3%)
fraction of incident white light, which is a consequence of graphene's unique
electronic structure. This value translates into universal dynamic conductivity
G =e^2/4h_bar within a few percent accuracy
Stacking boundaries and transport in bilayer graphene
Pristine bilayer graphene behaves in some instances as an insulator with a
transport gap of a few meV. This behaviour has been interpreted as the result
of an intrinsic electronic instability induced by many-body correlations.
Intriguingly, however, some samples of similar mobility exhibit good metallic
properties, with a minimal conductivity of the order of . Here we
propose an explanation for this dichotomy, which is unrelated to electron
interactions and based instead on the reversible formation of boundaries
between stacking domains (`solitons'). We argue, using a numerical analysis,
that the hallmark features of the previously inferred many-body insulating
state can be explained by scattering on boundaries between domains with
different stacking order (AB and BA). We furthermore present experimental
evidence, reinforcing our interpretation, of reversible switching between a
metallic and an insulating regime in suspended bilayers when subjected to
thermal cycling or high current annealing.Comment: 13 pages, 15 figures. Published version (Nano Letters
Electron hydrodynamics dilemma: whirlpools or no whirlpools
In highly viscous electron systems such as, for example, high quality
graphene above liquid nitrogen temperature, a linear response to applied
electric current becomes essentially nonlocal, which can give rise to a number
of new and counterintuitive phenomena including negative nonlocal resistance
and current whirlpools. It has also been shown that, although both effects
originate from high electron viscosity, a negative voltage drop does not
principally require current backflow. In this work, we study the role of
geometry on viscous flow and show that confinement effects and relative
positions of injector and collector contacts play a pivotal role in the
occurrence of whirlpools. Certain geometries may exhibit backflow at
arbitrarily small values of the electron viscosity, whereas others require a
specific threshold value for whirlpools to emerge
Raman Fingerprint of Charged Impurities in Graphene
We report strong variations in the Raman spectra for different single-layer
graphene samples obtained by micromechanical cleavage, which reveals the
presence of excess charges, even in the absence of intentional doping. Doping
concentrations up to ~10^13 cm-2 are estimated from the G peak shift and width,
and the variation of both position and relative intensity of the second order
2D peak. Asymmetric G peaks indicate charge inhomogeneity on the scale of less
than 1 micron.Comment: 3 pages, 5 figure
- …