82 research outputs found

    Skin bleaching: A neglected form of injury and threat to global skin

    Get PDF
    Skin bleaching is the use of creams, gels, or soaps to lighten the skin and is known to cause a number of injuries, many of which are potentially life-threatening. Despite the growing body of research identifying the harmful effects of skin bleaching, this topic has received little attention in the field of public health. This study provides a literature review of the current research documenting health risks associated with skin bleaching. Articles pertaining to skin bleaching practices and their health consequences were extracted from databases that publish research in the biomedical, public health, and social science literatures. Twenty-two articles that met search criteria were analysed and thematically coded using a priori research questions examining: (1) harms caused by skin bleaching, (2) alignment with accepted definitions of injury, and (3) suggestions for prevention and intervention. Results indicate skin bleaching poses a serious public health risk and threat to skin safety. Researchers have called for increased governmental and individual/community intervention to address this growing problem. Limitations of the study include the small number of scholarly publications on the topic, limited epidemiological study of the topic, and various selection biases in individual articles that may skew results. Keywords: skin safety, skin bleaching, skin lightening, injury prevention, literature review, public healt

    Nonlinear “oddities” at the percolation of 3D hierarchical graphene polymer nanocomposites

    Get PDF
    The nonlinear rheology of a novel 3D hierarchical graphene polymer nanocomposites was investigated in this study. Based on an isotactic polypropylene, the nanocomposites were prepared using simple melt mixing, which is an industrially relevant and scalable technique. The novel nanocomposites stand out as having an electrical percolation threshold (≈0.94 wt%) comparable to solution mixing graphene-based polymer nanocomposites. Their nonlinear flow behavior was investigated in oscillatory shear via Fourier-transform (FT) rheology and Chebyshev polynomial decomposition. It was shown that in addition to an increase in the magnitude of nonlinearities with filler concentration, the electrical percolation threshold corresponds to a unique nonlinear rheological signature. Thus, in dynamic strain sweep tests, the nonlinearities are dependent on the applied angular frequency, potentially detecting the emergence of a weakly connected network that is being disrupted by the flow. This is valid for both the third relative higher harmonic from Fourier-transform rheology, I3/1, as well as the third relative viscous, v3/1, Chebyshev coefficient. The angular frequency dependency comprised non-quadratic scaling in I3/1\ua0with the applied strain amplitude and a sign change in v3/1. The development of the nonlinear signatures was monitored up to concentrations in the conductor region to reveal the influence of a more robust percolated network

    A Mechanics Based Surface Image Interpretation Method for Multifunctional Nanocomposites

    Get PDF
    Graphene nanosheets and thicker graphite nanoplatelets are being used as reinforcement in polymeric materials to improve the material properties or induce new functional properties. By improving dispersion, de-agglomerating the particles, and ensuring the desired orientation of the nano-structures in the matrix, the microstructure can be tailored to obtain specific material properties. A novel surface image assisted modeling framework is proposed to understand functional properties of the graphene enhanced polymer. The effective thermal and mechanical responses are assessed based on computational homogenization. For the mechanical response, the 2-D nanoplatelets are modeled as internal interfaces that store energy for membrane actions. The effective thermal response is obtained similarly, where 2-D nanoplatelets are represented using regions of high conductivity. Using the homogenization simulation, macroscopic stiffness properties and thermal conductivity properties are modeled and then compared to the experimental data. The proposed surface image assisted modeling yields reasonable effective mechanical and thermal properties, where the Kapitza effect plays an important part in effective thermal properties

    Graphene-Based Antimicrobial Biomedical Surfaces

    Get PDF
    Biomedical application of graphene derivatives have been intensively studied in last decade. With the exceptional structural, thermal, electrical, and mechanical properties, these materials have attracted immense attention of biomedical scientists to utilize graphene derivatives in biomedical devices to improve their performance or to achieve desired functions. Surfaces of graphene derivatives including graphite, graphene, graphene oxide and reduce graphene oxide have been demonstrated to pave an excellent platform for antimicrobial behavior, enhanced biocompatibility, tissue engineering, biosensors and drug delivery. This review focuses on the recent advancement in the research of biomedical devices with the coatings or highly structured polymer nanocomposite surfaces of graphene derivatives for antimicrobial activity and sterile surfaces comprising an entirely new class of antibacterial materials. Overall, we aim to highlight on the potential of these materials, current understanding and knowledge gap in the antimicrobial behavior and biocompatibility to be utilized of their coatings to prevent the cross infections

    Mechanical Behavior of Melt‐Mixed 3D Hierarchical Graphene/Polypropylene Nanocomposites

    Get PDF
    The mechanical properties of novel low percolation melt-mixed 3D hierarchical graphene/polypropylene nanocomposites are analyzed in this study. The analysis spans a broad range of techniques and time scales, from impact to tensile, dynamic mechanical behavior, and creep. The applicability of the time–temperature superposition principle and its limitations in the construction of the master curve for the isotactic polypropylene (iPP)-based graphene nanocomposites has been verified and presented. The Williams–Landel–Ferry method has been used to evaluate the dynamics and also Cole–Cole curves were presented to verify the thermorheological character of the nanocomposites. Short term (quasi-static) tensile tests, creep, and impact strength measurements were used to evaluate the load transfer efficiency. A significant increase of Young’s modulus with increasing filler content indicates reasonably good dispersion and adhesion between the iPP and the filler. The Young’s modulus results were compared with predicted modulus values using Halpin–Tsai model. An increase in brittleness resulting in lower impact strength values has also been recorded

    The Exo-Polysaccharide Component of Extracellular Matrix is Essential for the Viscoelastic Properties of Bacillus subtilis Biofilms

    Get PDF
    Bacteria are known to form biofilms on various surfaces. Biofilms are multicellular aggregates, held together by an extracellular matrix, which is composed of biological polymers. Three principal components of the biofilm matrix are exopolysaccharides (EPS), proteins, and nucleic acids. The biofilm matrix is essential for biofilms to remain organized under mechanical stress. Thanks to their polymeric nature, biofilms exhibit both elastic and viscous mechanical characteristics; therefore, an accurate mechanical description needs to take into account their viscoelastic nature. Their viscoelastic properties, including during their growth dynamics, are crucial for biofilm survival in many environments, particularly during infection processes. How changes in the composition of the biofilm matrix affect viscoelasticity has not been thoroughly investigated. In this study, we used interfacial rheology to study the contribution of the EPS component of the matrix to viscoelasticity of Bacillus subtilis biofilms. Two strategies were used to specifically deplete the EPS component of the biofilm matrix, namely (i) treatment with sub-lethal doses of vitamin C and (ii) seamless inactivation of the eps operon responsible for biosynthesis of the EPS. In both cases, the obtained results suggest that the EPS component of the matrix is essential for maintaining the viscoelastic properties of bacterial biofilms during their growth. If the EPS component of the matrix is depleted, the mechanical stability of biofilms is compromised and the biofilms become more susceptible to eradication by mechanical stress

    Homogenization Method for 2-D Nano-Structure Reinforced Polymer Matrix

    Get PDF
    Graphene flakes are used as additives in polymer matrices to improve the material properties. Critical aspects of obtaining graphene enhanced functional properties in polymer nanocomposites include the composition and morphological optimization. The concentrations of flakes must be optimized to create components’ material properties which achieve the target design and cost. Via processing, the microstructure can be tailored to attain the desired material properties by de-agglomerating the particles, improving dispersion and, ensuring the desired orientation of the nano-structures in the matrix. A predictive model is needed to understand the increased stiffness of the reinforced matrix of these composite materials. Using a 2D image and FE representation of micrographs of polyethylene (PE) embedded with (2-D) graphite nanoplatelets obtained via melt extrusion, the mechanical properties are assessed based on computational homogenization. A representative volume element (RVE) of the nano-structure reinforced polymer matrix is established, where the PE bulk and 2-D flakes are modeled based on their elastic properties. The 2-D flakes are considered as internal interfaces that store energy for membrane actions. From the homogenization analysis, macroscopic stiffness properties are simulated and compared to the experimental of Gaska et al. [1] with respect to increasing volume concentrations, orientation and distribution of the graphene. References: [1] Gaska et al., (2017) Gas Barrier, Thermal, Mechanical and Rheological Properties of Highly Aligned Graphene-LDPE Nanocomposites, Polymers 9, 294

    Antibacterial effect of boron nitride flakes with controlled orientation in polymer composites

    Get PDF
    Boron nitride (BN) is a stable 2D material with physiochemical properties similar to graphene-based nanomaterials. We have recently demonstrated that vertically aligned coatings of graphene-based nanomaterials provide strong antibacterial effects on various surfaces. Here we investigated whether BN, a nanomaterial with extensive similarities to graphene, might exhibit similar antibacterial properties. To test this, we developed a novel composite material using BN and low density polyethylene (LDPE) polymer. The composite was extruded under controlled melt flow conditions leading to highly structured morphology, with BN oriented in the extrusion flow direction. Nanocomposite extruded surfaces perpendicular to the flow direction were etched, thus exposing BN nanoparticles embedded in the matrix. The antimicrobial activity of extruded samples was evaluated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus by the colony forming units (CFUs) counting method. Furthermore, the bactericidal effect of oriented BN against E. coli and S. aureus was evaluated by scanning electron microscopy (SEM) and live/dead viability assay. Our results suggest that BN nanoflakes on the extruded BN/LDPE composite physically interact with the bacterial cellular envelope, leading to irreparable physical damage. Therefore, we propose that BN–polymer composites might be useful to develop polymer based biomedical devices protected against bacterial adhesion, and thus minimize device associated infections

    Computational Screening of Diffusive Transport in Nanoplatelet-Filled Composites: Use of Graphene to Enhance Polymer Barrier Properties

    Get PDF
    Motivated by the substantial interest in various fillers to enhance the barrier properties of polymeric films, especially graphene derivatives, we perform a computational screening of obstructed diffusion to explore the design parameter space of nanoplatelet-filled composites synthesized in silico. As a model for the nanoplatelets, we use circular and elliptical nonoverlapping and impermeable flat disks, and diffusion is stochastically simulated using a random-walk model, from which the effective diffusivity is calculated. On the basis of 4000 generated structures and diffusion simulations, we systematically investigate the impact of different nanoplatelet characteristics such as orientation, layering, size, polydispersity, shape, and amount. We conclude that the orientation, size, and amount of nanoplatelets are the most important parameters and show that using nanoplatelets oriented perpendicular to the diffusion direction, under reasonable assumptions, with approximately 0.2% (w/w) graphene, we can reach 90% reduction and, with approximately 1% (w/w) graphene, we can reach 99% reduction in diffusivity, purely because of geometrical effects, in a defect-free matrix with perfect compatibility. Additionally, our results suggest that the existing analytical models have some difficulty with extremely large aspect ratio (extremely flat) nanoplatelets, which calls for further development

    Optical Bandgap Formation in AlInGaN Alloys

    Get PDF
    We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence,photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices
    • …
    corecore